Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2021

18-08-2020 | Original Article

Training with high perceptual difficulty improves the capacity and fidelity of internal representation in VWM

Auteurs: Kaiyue Wang, Jiehui Qian

Gepubliceerd in: Psychological Research | Uitgave 6/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

It has been shown that the capacity of visual working memory (VWM) is a strong predictor of individual intelligence, and researchers have developed various training protocols to improve VWM capacity. However, it seems that whether the fidelity of internal representation in VWM can also be improved by training is largely overlooked in the past literature. Here, we introduced a new training approach that involved increasing the perceptual difficulty of training materials to enhance VWM, and both memory capacity and the fidelity of representation were examined to assess the training efficacy. Participants with normal vision and cognitive abilities received 3-week training on VWM using a change detection task, and the results showed that both the capacity and the fidelity of memory representations were improved for training with perceptually difficult stimuli, while only the fidelity was improved for training with perceptually normal stimuli. In addition, we found that the training effects on memory precision may be subject to capacity constraints. We suggest that long-term adaptive training with perceptually difficult stimuli may facilitate encoding efficiency through familiarizing trainees with an increased baseline of cognitive workload during the encoding process. The present study offers clear evidence that training with high perceptual difficulty is more effective and the improvements in VWM are more stable than training with perceptually normal materials, and the simple manipulation on training stimuli indicates that the method can be generalized to a wider range of training situations and populations.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.PubMedCrossRef Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.PubMedCrossRef
go back to reference Arend, A. M., & Zimmer, H. D. (2012). Successful training of filtering mechanisms in multiple object tracking does not transfer to filtering mechanisms in a visual working memory task: Behavioral and electrophysiological evidence. Neuropsychologia, 50(10), 2379–2388.PubMedCrossRef Arend, A. M., & Zimmer, H. D. (2012). Successful training of filtering mechanisms in multiple object tracking does not transfer to filtering mechanisms in a visual working memory task: Behavioral and electrophysiological evidence. Neuropsychologia, 50(10), 2379–2388.PubMedCrossRef
go back to reference Benjamini, Y., & Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics, 25(1), 60–83.CrossRef Benjamini, Y., & Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics, 25(1), 60–83.CrossRef
go back to reference Berry, A. S., Zanto, T. P., Clapp, W. C., Hardy, J. L., Delahunt, P. B., Mahncke, H. W., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS ONE, 5(7), 1–8.CrossRef Berry, A. S., Zanto, T. P., Clapp, W. C., Hardy, J. L., Delahunt, P. B., Mahncke, H. W., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS ONE, 5(7), 1–8.CrossRef
go back to reference Blacker, K. J., & Curby, K. M. (2013). Enhanced visual short-term memory in action video game players. Attention Perception and Psychophysics, 75(6), 1128–1136.CrossRef Blacker, K. J., & Curby, K. M. (2013). Enhanced visual short-term memory in action video game players. Attention Perception and Psychophysics, 75(6), 1128–1136.CrossRef
go back to reference Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1(4), 434–454.PubMedPubMedCentralCrossRef Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1(4), 434–454.PubMedPubMedCentralCrossRef
go back to reference Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398.PubMedCrossRef Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398.PubMedCrossRef
go back to reference Chen, D., Yee, E. H., & Jiang, Y. (2006). Visual working memory for trained and novel polygons. Visual Cognition, 14(1), 37–54.CrossRef Chen, D., Yee, E. H., & Jiang, Y. (2006). Visual working memory for trained and novel polygons. Visual Cognition, 14(1), 37–54.CrossRef
go back to reference Chooi, W. T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40(6), 531–542.CrossRef Chooi, W. T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40(6), 531–542.CrossRef
go back to reference Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552.PubMedCrossRef Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552.PubMedCrossRef
go back to reference Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.CrossRefPubMed Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.CrossRefPubMed
go back to reference Crist, R. E., Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1997). Perceptual learning of spatial localization: Specificity for orientation, position, and context. Journal of Neurophysiology, 78(6), 2889–2894.PubMedCrossRef Crist, R. E., Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1997). Perceptual learning of spatial localization: Specificity for orientation, position, and context. Journal of Neurophysiology, 78(6), 2889–2894.PubMedCrossRef
go back to reference Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008a). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512.PubMedCrossRef Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008a). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512.PubMedCrossRef
go back to reference Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008b). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720.PubMedCrossRef Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008b). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720.PubMedCrossRef
go back to reference Donaldson, W. (1993). Accuracy of d′ and A′ as estimates of sensitivity. Bulletin of the Psychonomic Society, 31(4), 271–274.CrossRef Donaldson, W. (1993). Accuracy of d′ and A′ as estimates of sensitivity. Bulletin of the Psychonomic Society, 31(4), 271–274.CrossRef
go back to reference Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin and Review, 12(6), 1127–1133.PubMedCrossRef Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin and Review, 12(6), 1127–1133.PubMedCrossRef
go back to reference Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309.CrossRef Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309.CrossRef
go back to reference Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.CrossRefPubMed Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.CrossRefPubMed
go back to reference Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top–down control of visual search in schizophrenia. Schizophrenia Research, 94(1–3), 148–155.PubMedCrossRef Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top–down control of visual search in schizophrenia. Schizophrenia Research, 94(1–3), 148–155.PubMedCrossRef
go back to reference Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.PubMedCrossRef Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.PubMedCrossRef
go back to reference Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419.PubMedCrossRef Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419.PubMedCrossRef
go back to reference Heinzel, S., Schulte, S., Onken, J., Duong, Q. L., & Rapp, M. A. (2013). Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. Aging Neuropsychology and Cognition, 21(2), 146–173.CrossRef Heinzel, S., Schulte, S., Onken, J., Duong, Q. L., & Rapp, M. A. (2013). Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. Aging Neuropsychology and Cognition, 21(2), 146–173.CrossRef
go back to reference Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15.PubMedCrossRef Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15.PubMedCrossRef
go back to reference Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.CrossRef Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.CrossRef
go back to reference Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5), 1147–1154.PubMedCrossRef Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5), 1147–1154.PubMedCrossRef
go back to reference Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189.CrossRef Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189.CrossRef
go back to reference Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What's new in psychtoolbox-3. Perception, 36(14), 1–16. Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What's new in psychtoolbox-3. Perception, 36(14), 1–16.
go back to reference Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324.PubMedCrossRef Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324.PubMedCrossRef
go back to reference Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186.PubMedCrossRef Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186.PubMedCrossRef
go back to reference Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791.PubMedCrossRef Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791.PubMedCrossRef
go back to reference Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14(4), 389–433.CrossRef Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14(4), 389–433.CrossRef
go back to reference Li, C. H., He, X., Wang, Y. J., Hu, Z., & Guo, C. Y. (2017). Visual working memory capacity can be increased by training on distractor filtering efficiency. Frontiers in Psychology, 8, 196.PubMedPubMedCentralCrossRef Li, C. H., He, X., Wang, Y. J., Hu, Z., & Guo, C. Y. (2017). Visual working memory capacity can be increased by training on distractor filtering efficiency. Frontiers in Psychology, 8, 196.PubMedPubMedCentralCrossRef
go back to reference Li, S. C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731.PubMedCrossRef Li, S. C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731.PubMedCrossRef
go back to reference Loosli, S. V., Buschkuehl, M., Perrig, W. J., & Jaeggi, S. M. (2012). Working memory training improves reading processes in typically developing children. Child Neuropsychology, 18(1), 62–78.PubMedCrossRef Loosli, S. V., Buschkuehl, M., Perrig, W. J., & Jaeggi, S. M. (2012). Working memory training improves reading processes in typically developing children. Child Neuropsychology, 18(1), 62–78.PubMedCrossRef
go back to reference Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.PubMedCrossRef Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.PubMedCrossRef
go back to reference Melcher, D., & Piazza, M. (2011). The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS ONE, 6(12), 1–11.CrossRef Melcher, D., & Piazza, M. (2011). The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS ONE, 6(12), 1–11.CrossRef
go back to reference Moore, C. D., Cohen, M. X., & Ranganath, C. (2006). Neural mechanisms of expert skills in visual working memory. Journal of Neuroscience, 26(43), 11187–11196.PubMedCrossRef Moore, C. D., Cohen, M. X., & Ranganath, C. (2006). Neural mechanisms of expert skills in visual working memory. Journal of Neuroscience, 26(43), 11187–11196.PubMedCrossRef
go back to reference Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18(1), 46–60.PubMedCrossRef Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18(1), 46–60.PubMedCrossRef
go back to reference Mumford, M. D., Costanza, D. P., Baughman, W. A., Threlfall, K., & Fleishman, E. A. (1994). Influence of abilities on performance during practice: Effects of massed and distributed practice. Journal of Educational Psychology, 86(1), 134.CrossRef Mumford, M. D., Costanza, D. P., Baughman, W. A., Threlfall, K., & Fleishman, E. A. (1994). Influence of abilities on performance during practice: Effects of massed and distributed practice. Journal of Educational Psychology, 86(1), 134.CrossRef
go back to reference Oberauer, K., Süβ, H. M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36(6), 641–652.CrossRef Oberauer, K., Süβ, H. M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36(6), 641–652.CrossRef
go back to reference Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.PubMedCrossRef Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.PubMedCrossRef
go back to reference Olson, I. R., & Jiang, Y. (2004). Visual short-term memory is not improved by training. Memory and Cognition, 32(8), 1326–1332.PubMedCrossRef Olson, I. R., & Jiang, Y. (2004). Visual short-term memory is not improved by training. Memory and Cognition, 32(8), 1326–1332.PubMedCrossRef
go back to reference Olson, I. R., Jiang, Y., & Moore, K. S. (2005). Associative learning improves visual working memory performance. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 889–900.PubMed Olson, I. R., Jiang, Y., & Moore, K. S. (2005). Associative learning improves visual working memory performance. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 889–900.PubMed
go back to reference Pashler, H. (1988). Familiarity and visual change detection. Perception and Psychophysics, 44, 369–378.PubMedCrossRef Pashler, H. (1988). Familiarity and visual change detection. Perception and Psychophysics, 44, 369–378.PubMedCrossRef
go back to reference Pedale, T., & Santangelo, V. (2015). Perceptual salience affects the contents of working memory during free-recollection of objects from natural scenes. Frontiers in Human Neuroscience, 9, 60.PubMedPubMedCentralCrossRef Pedale, T., & Santangelo, V. (2015). Perceptual salience affects the contents of working memory during free-recollection of objects from natural scenes. Frontiers in Human Neuroscience, 9, 60.PubMedPubMedCentralCrossRef
go back to reference Penner, I. K., Vogt, A., Stöcklin, M., Gschwind, L., Opwis, K., & Calabrese, P. (2012). Computerised working memory training in healthy adults: A comparison of two different training schedules. Neuropsychological Rehabilitation, 22(5), 716–733.PubMedCrossRef Penner, I. K., Vogt, A., Stöcklin, M., Gschwind, L., Opwis, K., & Calabrese, P. (2012). Computerised working memory training in healthy adults: A comparison of two different training schedules. Neuropsychological Rehabilitation, 22(5), 716–733.PubMedCrossRef
go back to reference Pessoa, L., Gutierrez, E., Bandettini, P. A., & Ungerleider, L. G. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35(5), 975–987.PubMedCrossRef Pessoa, L., Gutierrez, E., Bandettini, P. A., & Ungerleider, L. G. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35(5), 975–987.PubMedCrossRef
go back to reference Qian, J., Zhang, K., Liu, S., & Lei, Q. (2019). The transition from feature to object: Storage unit in visual working memory depends on task difficulty. Memory and Cognition, 47(8), 1498–1514.PubMedCrossRef Qian, J., Zhang, K., Liu, S., & Lei, Q. (2019). The transition from feature to object: Storage unit in visual working memory depends on task difficulty. Memory and Cognition, 47(8), 1498–1514.PubMedCrossRef
go back to reference Qian, J., Zhang, K., Wang, K., Li, J., & Lei, Q. (2018). Saturation and brightness modulate the effect of depth on visual working memory. Journal of Vision, 18(9), 16–16.PubMedCrossRef Qian, J., Zhang, K., Wang, K., Li, J., & Lei, Q. (2018). Saturation and brightness modulate the effect of depth on visual working memory. Journal of Vision, 18(9), 16–16.PubMedCrossRef
go back to reference Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin and Review, 18(2), 324–330.PubMedCrossRef Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin and Review, 18(2), 324–330.PubMedCrossRef
go back to reference Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 27.PubMedPubMedCentral Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 27.PubMedPubMedCentral
go back to reference Schneider, B. A., & Pichora-Fuller, M. K. (2000). Implications of perceptual deterioration for cognitive aging research. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 155–219). Lawrence Erlbaum Associates Publishers. Schneider, B. A., & Pichora-Fuller, M. K. (2000). Implications of perceptual deterioration for cognitive aging research. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 155–219). Lawrence Erlbaum Associates Publishers.
go back to reference Schoups, A. A., Vogels, R., & Orban, G. A. (1995). Human perceptual learning in identifying the oblique orientation: Retinotopy, orientation specificity and monocularity. The Journal of Physiology, 483(3), 797–810.PubMedPubMedCentralCrossRef Schoups, A. A., Vogels, R., & Orban, G. A. (1995). Human perceptual learning in identifying the oblique orientation: Retinotopy, orientation specificity and monocularity. The Journal of Physiology, 483(3), 797–810.PubMedPubMedCentralCrossRef
go back to reference Schwarb, H., Nail, J., & Schumacher, E. H. (2016). Working memory training improves visual short-term memory capacity. Psychological Research Psychologische Forschung, 80(1), 128–148.PubMedCrossRef Schwarb, H., Nail, J., & Schumacher, E. H. (2016). Working memory training improves visual short-term memory capacity. Psychological Research Psychologische Forschung, 80(1), 128–148.PubMedCrossRef
go back to reference Shin, E., Lee, H., Yoo, S. A., & Chong, S. C. (2015). Training Improves the Capacity of Visual Working Memory When It Is Adaptive, Individualized, and Targeted. PLoS ONE, 10(4), 1–14.CrossRef Shin, E., Lee, H., Yoo, S. A., & Chong, S. C. (2015). Training Improves the Capacity of Visual Working Memory When It Is Adaptive, Individualized, and Targeted. PLoS ONE, 10(4), 1–14.CrossRef
go back to reference Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, and Computers, 31(1), 137–149.PubMedCrossRef Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, and Computers, 31(1), 137–149.PubMedCrossRef
go back to reference Sungur, H., & Boduroglu, A. (2012). Action video game players form more detailed representation of objects. Acta Psychologica, 139(2), 327–334.PubMedCrossRef Sungur, H., & Boduroglu, A. (2012). Action video game players form more detailed representation of objects. Acta Psychologica, 139(2), 327–334.PubMedCrossRef
go back to reference Tan, Q., Wang, Z., Sasaki, Y., & Watanabe, T. (2019). Category-induced transfer of visual perceptual learning. Current Biology, 29(8), 1374–1378.PubMedCrossRef Tan, Q., Wang, Z., Sasaki, Y., & Watanabe, T. (2019). Category-induced transfer of visual perceptual learning. Current Biology, 29(8), 1374–1378.PubMedCrossRef
go back to reference Thompson, T. W., Waskom, M. L., Garel, K. L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., et al. (2013). Failure of Working Memory Training to Enhance Cognition or Intelligence. PLoS ONE, 8(5), 1–15. Thompson, T. W., Waskom, M. L., Garel, K. L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., et al. (2013). Failure of Working Memory Training to Enhance Cognition or Intelligence. PLoS ONE, 8(5), 1–15.
go back to reference Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2015). Working memory delay activity predicts individual differences in cognitive abilities. Journal of Cognitive Neuroscience, 27(5), 853–865.PubMedCrossRef Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2015). Working memory delay activity predicts individual differences in cognitive abilities. Journal of Cognitive Neuroscience, 27(5), 853–865.PubMedCrossRef
go back to reference Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503.PubMedCrossRef Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503.PubMedCrossRef
go back to reference Von Bastian, C. C., & Eschen, A. (2016). Does working memory training have to be adaptive? Psychological Research Psychologische Forschung, 80(2), 181–194.CrossRef Von Bastian, C. C., & Eschen, A. (2016). Does working memory training have to be adaptive? Psychological Research Psychologische Forschung, 80(2), 181–194.CrossRef
go back to reference Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training attentional control and working memory—is younger, better? Developmental Review, 32(4), 360–387.CrossRef Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training attentional control and working memory—is younger, better? Developmental Review, 32(4), 360–387.CrossRef
go back to reference Watanabe, T., Náñez, J. E., Koyama, S., Mukai, I., Liederman, J., & Sasaki, Y. (2002). Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nature Neuroscience, 5(10), 1003–1009.PubMedCrossRef Watanabe, T., Náñez, J. E., Koyama, S., Mukai, I., Liederman, J., & Sasaki, Y. (2002). Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nature Neuroscience, 5(10), 1003–1009.PubMedCrossRef
go back to reference Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M. L., Bartfai, A., et al. (2007). Computerized working memory training after stroke—a pilot study. Brain Injury, 21(1), 21–29.PubMedCrossRef Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M. L., Bartfai, A., et al. (2007). Computerized working memory training after stroke—a pilot study. Brain Injury, 21(1), 21–29.PubMedCrossRef
go back to reference Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory—a single-subject analysis. Physiology and Behavior, 92(1–2), 186–192.PubMedCrossRef Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory—a single-subject analysis. Physiology and Behavior, 92(1–2), 186–192.PubMedCrossRef
go back to reference Wigfield, R., Gilbert, R., & Fleming, P. J. (1994). Sids: risk reduction measures. Early Human Development, 38(3), 161–164.PubMedCrossRef Wigfield, R., Gilbert, R., & Fleming, P. J. (1994). Sids: risk reduction measures. Early Human Development, 38(3), 161–164.PubMedCrossRef
go back to reference Yotsumoto, Y., Sasaki, Y., Chan, P., Vasios, C. E., Bonmassar, G., Ito, N., et al. (2009). Location-specific cortical activation changes during sleep after training for perceptual learning. Current Biology, 19(15), 1278–1282.PubMedCrossRef Yotsumoto, Y., Sasaki, Y., Chan, P., Vasios, C. E., Bonmassar, G., Ito, N., et al. (2009). Location-specific cortical activation changes during sleep after training for perceptual learning. Current Biology, 19(15), 1278–1282.PubMedCrossRef
go back to reference Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304.PubMedCrossRef Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304.PubMedCrossRef
Metagegevens
Titel
Training with high perceptual difficulty improves the capacity and fidelity of internal representation in VWM
Auteurs
Kaiyue Wang
Jiehui Qian
Publicatiedatum
18-08-2020
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01404-2

Andere artikelen Uitgave 6/2021

Psychological Research 6/2021 Naar de uitgave