Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Psychological Research 6/2021

10-08-2020 | Original Article

Reading direction and spatial effects in parity and arithmetic tasks

Auteurs: Maham Azhar, Yalin Chen, Jamie I. D. Campbell

Gepubliceerd in: Psychological Research | Uitgave 6/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

This study investigated the relationship between numerical and spatial processing and reading direction, conducting conceptual replications of the Shaki et al. (Psychonomic Bulletin & Review 16(2): 328–331, 2009) parity task and the Mathieu et al. (Cognition 146: 229–239, 2016, Experiment 1) simple addition (e.g., 3 + 2) and subtraction (e.g., 3 − 2) task. Twenty-four left-to-right readers (LTR) and 24 right-to-left readers (RTL) were tested. The response time (RT) analysis of the parity task presented a robust spatial-numerical association of response codes (SNARC) effect (left-side response advantage for smaller numbers and right-side advantage for larger numbers) for LTR but not RTL readers. In the arithmetic task, the three problem elements (e.g., 3 + 4) were presented sequentially with the second operand displaced slightly to the left or right of fixation. RTL but not LTR readers presented a RT advantage for subtraction relative to addition with a right-shifted second operand compared to it being left-shifted. This is consistent with a spatial bias linked to native reading direction. For both reading-direction groups, effects of the left vs. right side manipulation in the arithmetic or parity task did not correspond to parallel effects in the other task. The results imply that the parity-based SNARC effects and side-related effects in cognitive arithmetic are not equivalent measures of space-related processes in cognitive number processing and likely reflect distinct mechanisms.
Voetnoten
1
Jérôme Prado confirmed (25/11/2019) that Fig. 1 in Mathieu, et al. (2016) correctly depicted the trial procedure.
 
2
The size factor in the arithmetic task participated in several interactions not related to O2 position (see supplemental materials), including an Operation × Size × Format × Group interaction) [F(1, 46) = 9.69, p = 0.003, MSE = 12,623, \( \eta_{\text{p}}^{2} \) = 0.17, BF10 = 14.20]. We mention this interaction in particular because it reflected especially slow subtraction for RTL readers with larger Indic stimuli. This seems to parallel the difficulty that the RTL group had with large Indic numerals in the parity task. As this finding is not material to the O2-position manipulation we did not pursue it here.
 
3
The dRT convention for the parity (i.e., SNARC) task is the opposite; that is the left-side RT is subtracted from right-side RT (e.g., Shaki et al., 2009, p. 330).
 
4
There were no significant effects in the corresponding ANOVA of large problems (see the supplementary documentation).
 
Literatuur
go back to reference Campbell, J. I. D., Chen, Y., & Azhar, M. (2020). Not toeing the number line for simple arithmetic: Two large-n conceptual replications of Mathieu et al. ( Cognition, 2016, Experiment 1). Numerical Cognition, accepted 13/2/2020. Campbell, J. I. D., Chen, Y., & Azhar, M. (2020). Not toeing the number line for simple arithmetic: Two large-n conceptual replications of Mathieu et al. ( Cognition, 2016, Experiment 1). Numerical Cognition, accepted 13/2/2020.
go back to reference Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. https://​doi.​org/​10.​1037.​0096-3445.​122.​3.​371.​ CrossRef Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. https://​doi.​org/​10.​1037.​0096-3445.​122.​3.​371.​ CrossRef
go back to reference Fias, W. & Bonato, M. (2018). Which space for numbers. In Henik, A. & Fias, W. (Eds.), Heterogeneity of Function in Numerical Cognition (pp. 233-242). https://​doi.​org/​https://10.1016/b978-0-12-811529-9.00002-9. Fias, W. & Bonato, M. (2018). Which space for numbers. In Henik, A. & Fias, W. (Eds.), Heterogeneity of Function in Numerical Cognition (pp. 233-242). https://​doi.​org/​https://10.1016/b978-0-12-811529-9.00002-9.
go back to reference Hung, Y.-H., Hung, D. L., Tzeng, O. J.-L., & Wu, D. H. (2008). Flexible spatial mapping of different notations of numbers in Chinese readers. Cognition, 106, 1441–1450. CrossRefPubMed Hung, Y.-H., Hung, D. L., Tzeng, O. J.-L., & Wu, D. H. (2008). Flexible spatial mapping of different notations of numbers in Chinese readers. Cognition, 106, 1441–1450. CrossRefPubMed
go back to reference Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-Prime user’s guide. Pittsburgh: Psychology Software Tools Inc. Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-Prime user’s guide. Pittsburgh: Psychology Software Tools Inc.
go back to reference Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary subtraction. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29, 1339–1352. CrossRefPubMed Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary subtraction. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29, 1339–1352. CrossRefPubMed
Metagegevens
Titel
Reading direction and spatial effects in parity and arithmetic tasks
Auteurs
Maham Azhar
Yalin Chen
Jamie I. D. Campbell
Publicatiedatum
10-08-2020
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01397-y