Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task

Abstract

Simple exposure is sufficient to sensitize the human visual system to a particular direction of motion, but the underlying mechanisms of this process are unclear. Here, in a passive perceptual learning task, we found that exposure to task-irrelevant motion improved sensitivity to the local motion directions within the stimulus, which are processed at low levels of the visual system. In contrast, task-irrelevant motion had no effect on sensitivity to the global motion direction, which is processed at higher levels. The improvement persisted for at least several months. These results indicate that when attentional influence is limited, lower-level motion processing is more receptive to long-term modification than higher-level motion processing in the visual cortex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods of the first experiment.
Figure 2: Results of the first experiment.
Figure 3: Procedure and results of the second experiment.
Figure 4: Results of the third and fourth experiments.

Similar content being viewed by others

References

  1. Gilbert, C. Rapid dynamic changes in adult cerebral cortex. Curr. Opin. Neurobiol. 3, 100–103 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Ramachandran, V., Cobb, S. & Yang, T. Sensory maps in the human brain. Nature 368, 592–593 (1994).

    PubMed  Google Scholar 

  3. Goldstone, R.L. Perceptual learning. Annu. Rev. Psychol. 49, 585–612 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Grossberg, S. How does the cerebral cortex work? Learning, attention and grouping by the laminar circuits of visual cortex. Spat. Vis. 12, 163–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Fahle, M. & Poggio, T. Perceptual Learning (MIT Press, Cambridge, 2002).

    Book  Google Scholar 

  6. Ramachandran, V.S. & Braddick, O. Orientation-specific learning in stereopsis. Perception 2, 371–376 (1973).

    Article  CAS  PubMed  Google Scholar 

  7. Fiorentini, A. & Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 287, 43–44 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Ball, K. & Sekuler, R. Direction-specific improvement in motion discrimination. Vision Res. 27, 953–965 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 88, 4966–4970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poggio, T., Fahle, M. & Edelman, S. Fast perceptual learning in visual hyperacuity. Science 256, 1018–1021 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Shiu, L.P. & Pashler, H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept. Psychophys. 52, 582–588 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Ahissar, M. & Hochstein, S. Attentional control of early perceptual learning. Proc. Natl. Acad. Sci. USA 90, 5718–5722 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karni, A. & Sagi, D. The time course of learning a visual skill. Nature 365, 250–252 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Sagi, D. & Tanne, D. Perceptual learning: learning to see. Curr. Opin. Neurobiol. 4, 195–199 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Beard, B.L., Levi, D.M. & Reich, L.N. Perceptual learning in parafoveal vision. Vision Res. 35, 1679–1690 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Vaina, L.M., Sundareswaran, V. & Harris, J.G. Learning to ignore: psychophysics and computational modeling of fast learning of direction in noisy motion stimuli. Brain Res. Cogn. Brain Res. 2, 155–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Gilbert, C.D. Plasticity in visual perception and physiology. Curr. Opin. Neurobiol. 6, 269–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Schoups, A.A. & Orban, G.A. Interocular transfer in perceptual learning of a pop-out discrimination task. Proc. Natl. Acad. Sci. USA 93, 7358–7362 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401–406 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Crist, R.E., Kapadia, M.K., Westheimer, G. & Gilbert, C.D. Perceptual learning of spatial localization: specificity for orientation, position and context. J. Neurophysiol. 78, 2889–2894 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Herzog, M.H. & Fahle, M. The role of feedback in learning a vernier discrimination task. Vision Res. 37, 2133–2141 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Jones, M.J., Sinha, P., Vetter, T. & Poggio, T. Top-down learning of low-level vision tasks. Curr. Biol. 7, 991–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Rubin, N., Nakayama, K. & Shapley, R. Abrupt learning and retinal size specificity in illusory contour perception. Curr. Biol. 7, 461–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Dosher, B.A. & Lu, Z.L. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl. Acad. Sci. USA 95, 13988–13993 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ito, M., Westheimer, G. & Gilbert, C.D. Attention and perceptual learning modulate contextual influences on visual perception. Neuron 20, 1191–1197 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z. Perceptual learning in motion discrimination that generalizes across motion directions. Proc. Natl. Acad. Sci. USA 96, 14085–14087 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gold, J., Bennett, P.J. & Sekuler, A.B. Signal but not noise changes with perceptual learning. Nature 402, 176–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Sigman, M. & Gilbert, C.D. Learning to find a shape. Nat. Neurosci. 3, 264–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Crist, R.E., Li, W. & Gilbert, C.D. Learning to see: experience and attention in primary visual cortex. Nat. Neurosci. 4, 519–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Matthews, N., Liu, Z. & Qian, N. The effect of orientation learning on contrast sensitivity. Vision Res. 41, 463–471 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practicing orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Fine, I. & Jacobs, R.A. Comparing perceptual learning across tasks: a review. J. Vision 2, 190–203 (2002).

    Google Scholar 

  33. Furmanski, C.S. & Engel, S.A. Perceptual learning in human primary visual cortex. J. Vision Suppl. (in press).

  34. Koyama, S., Harner, A. & Watanabe, T. Different mechanisms for the learning of motion detection versus the learning of motion direction discrimination. J. Vision Suppl. (in press).

  35. Watanabe, T., Nanez, J.E. & Sasaki, Y. Perceptual learning without perception. Nature 413, 844–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Maunsell, J.H. & Newsome, W.T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Zohary, E., Scase, M.O. & Braddick, O.J. Integration across directions in dynamic random dot displays: vector summation or winner take all? Vision Res. 36, 2321–2331 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, D.W. & Sekuler, R. Coherent global motion percepts from stochastic local motions. Vision Res. 24, 55–62 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Williams, D.W., Phillips, G. & Sekuler, R. Hystersis in perception of motion direction as evidence for neural cooperativity. Nature 324, 253–254 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Grzywacz, N.M., Smith, J.A. & Yuile, A.L. in Proceedings of the IEEE Workshop on Visual Motion 148–155 (IEEE Computer Society, Washington, DC, 1989).

  41. Grzywacz, N.M. & Yuile, A.L. in Computational Models of Visual Processing (eds. Landy, M. S. & Movshon, J. A.) 231–252 (MIT Press, Cambridge, 1991).

    Google Scholar 

  42. Snowden, R.J., Treue, S., Erickson, R.G. & Andersen, R.A. The response of area MT and V1 neurons to transparent motion. J. Neurosci. 11, 2768–2785 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heeger, D.J., Boynton, G.M., Demb, J.B., Seidemann, E. & Newsome, W.T. Motion opponency in visual cortex. J. Neurosci. 19, 7162–7174 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watanabe, T. & Cole, R. Propagation of local motion correspondence. Vision Res. 35, 2853–2861 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Raymond, J.E., Shapiro, K.L. & Arnell, K.M. Temporary suppression of visual processing in an RSVP task: an attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 18, 849–860 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Joseph, J.S., Chun, M.M. & Nakayama, K. Attentional requirements in a 'preattentive' feature search task. Nature 387, 805–807 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Somers, D.C., Dale, A.M., Seiffert, A.E. & Tootell, R.B. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 1663–1668 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Watamaniuk, S.N., Sekuler, R. & Williams, D.W. Direction perception in complex dynamic displays: the integration of direction information. Vision Res. 29, 47–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Braddick, O.J. et al. Brain areas sensitive to coherent visual motion. Perception 30, 61–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Watanabe, T. et al. Psychophysics and fMRI reveal V1 as the locus of passive learning. J. Vision Suppl. (in press).

Download references

Acknowledgements

The authors thank M. Herzog and D. Somers for comments. This research was supported by a Human Behavior & Cognition Program of the National Science Foundation grant (BCS-9905194) to T.W. and an ASU West Vision Science Lab grant to J.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Watanabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Náñez, J., Koyama, S. et al. Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nat Neurosci 5, 1003–1009 (2002). https://doi.org/10.1038/nn915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing