Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Psychological Research 5/2021

23-07-2020 | Original Article

No power: exponential expressions are not processed automatically as such

Auteurs: Ami Feder, Mariya Lozin, Michal Pinhas

Gepubliceerd in: Psychological Research | Uitgave 5/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Little is known about the mental representation of exponential expressions. The present study examined the automatic processing of exponential expressions under the framework of multi-digit numbers, specifically asking which component of the expression (i.e., the base/power) is more salient during this type of processing. In a series of three experiments, participants performed a physical size comparison task. They were presented with pairs of exponential expressions that appeared in frames that differed in their physical sizes. Participants were instructed to ignore the stimuli within the frames and choose the larger frame. In all experiments, the pairs of exponential expressions varied in the numerical values of their base and/or power component. We manipulated the compatibility between the base and the power components, as well as their physical sizes to create a standard versus nonstandard syntax of exponential expressions. Experiments 1 and 3 demonstrate that the physically larger component drives the size congruity effect, which is typically the base but was manipulated here in some cases to be the power. Moreover, Experiments 2 and 3 revealed similar patterns, even when manipulating the compatibility between base and power components. Our findings support componential processing of exponents by demonstrating that participants were drawn to the physically larger component, even though in exponential expressions, the power, which is physically smaller, has the greater mathematical contribution. Thus, revealing that the syntactic structure of an exponential expression is not processed automatically. We discuss these results with regard to multi-digit numbers research.

Met onderstaand(e) abonnement(en) heeft u direct toegang:

BSL Psychologie Totaal

Met BSL Psychologie Totaal blijf je als professional steeds op de hoogte van de nieuwste ontwikkelingen binnen jouw vak. Met het online abonnement heb je toegang tot een groot aantal boeken, protocollen, vaktijdschriften en e-learnings op het gebied van psychologie en psychiatrie. Zo kun je op je gemak en wanneer het jou het beste uitkomt verdiepen in jouw vakgebied.

Literatuur
go back to reference Avcu, R. (2010). Eight graders’ capabilities in exponents: making mental comparisons. Practice and Theory in System of Education, 5(1), 39–48. Avcu, R. (2010). Eight graders’ capabilities in exponents: making mental comparisons. Practice and Theory in System of Education, 5(1), 39–48.
go back to reference Bargh, J. A. (1992). The ecology of automaticity: Toward establishing the conditions needed to produce automatic processing effects. American Journal of Psychology, 105, 181–199. CrossRef Bargh, J. A. (1992). The ecology of automaticity: Toward establishing the conditions needed to produce automatic processing effects. American Journal of Psychology, 105, 181–199. CrossRef
go back to reference Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33, 1410–1419. PubMedPubMedCentral Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33, 1410–1419. PubMedPubMedCentral
go back to reference Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124, 434–452. CrossRef Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124, 434–452. CrossRef
go back to reference Campbell, J. I. D. (1997). On the relation between skilled performance of simple division and multiplication. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1140–1159. PubMedPubMedCentral Campbell, J. I. D. (1997). On the relation between skilled performance of simple division and multiplication. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1140–1159. PubMedPubMedCentral
go back to reference Cohen, D. J. (2010). Evidence for direct retrieval of relative quantity information in a quantity judgment task: Decimals, integers, and the role of physical similarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1389–1398. PubMedPubMedCentral Cohen, D. J. (2010). Evidence for direct retrieval of relative quantity information in a quantity judgment task: Decimals, integers, and the role of physical similarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1389–1398. PubMedPubMedCentral
go back to reference Dehaene, S. (1989). The psychophysics of numerical comparison: A reexamination of apparently incompatible data. Perception and Psychophysics, 45, 557–566. PubMedCrossRefPubMedCentral Dehaene, S. (1989). The psychophysics of numerical comparison: A reexamination of apparently incompatible data. Perception and Psychophysics, 45, 557–566. PubMedCrossRefPubMedCentral
go back to reference Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16, 626–641. PubMedPubMedCentral Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16, 626–641. PubMedPubMedCentral
go back to reference DeWolf, M., Bassok, M., & Holyoak, K. (2013). Analogical reasoning with rational numbers: Semantic alignment based on discrete versus continuous quantities. In M. Knauf, M. Pauven, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the of the Cognitive Science Society. Austin, TX: Cognitive Science Society. DeWolf, M., Bassok, M., & Holyoak, K. (2013). Analogical reasoning with rational numbers: Semantic alignment based on discrete versus continuous quantities. In M. Knauf, M. Pauven, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
go back to reference Dubinsky, E. (1991). Constructive aspects of reflective abstraction in advanced mathematics. In L. P. Steffe (Ed .), Epistemological foundations of mathematical experience. New York: Springer-Verlag. Dubinsky, E. (1991). Constructive aspects of reflective abstraction in advanced mathematics. In L. P. Steffe (Ed .), Epistemological foundations of mathematical experience. New York: Springer-Verlag.
go back to reference Ebersbach, M., & Wilkening, F. (2007). Children's intuitive mathematics: The development of knowledge about nonlinear growth. Child Development, 78, 296–308. PubMedCrossRefPubMedCentral Ebersbach, M., & Wilkening, F. (2007). Children's intuitive mathematics: The development of knowledge about nonlinear growth. Child Development, 78, 296–308. PubMedCrossRefPubMedCentral
go back to reference Ganor-Stern, D., Pinhas, M., Kallai, A., & Tzelgov, J. (2010). Holistic representation of negative numbers is formed when needed for the task. The Quarterly Journal of Experimental Psychology, 63, 1969–1981. PubMedCrossRefPubMedCentral Ganor-Stern, D., Pinhas, M., Kallai, A., & Tzelgov, J. (2010). Holistic representation of negative numbers is formed when needed for the task. The Quarterly Journal of Experimental Psychology, 63, 1969–1981. PubMedCrossRefPubMedCentral
go back to reference Ganor-Stern, D., Tzelgov, J., & Ellenbogen, R. (2007). Automaticity and two-digit numbers. Journal of Experimental Psychology: Human Perception and Performance, 33, 483–496. PubMedPubMedCentral Ganor-Stern, D., Tzelgov, J., & Ellenbogen, R. (2007). Automaticity and two-digit numbers. Journal of Experimental Psychology: Human Perception and Performance, 33, 483–496. PubMedPubMedCentral
go back to reference García-Orza, J., & Damas, J. (2011). Sequential processing of two-digit numbers: Evidence of decomposition from a perceptual number matching task. Zeitschrift Für Psychologie/Journal of Psychology, 219(1), 23–29. CrossRef García-Orza, J., & Damas, J. (2011). Sequential processing of two-digit numbers: Evidence of decomposition from a perceptual number matching task. Zeitschrift Für Psychologie/Journal of Psychology, 219(1), 23–29. CrossRef
go back to reference García-Orza, J., Estudillo, A. J., Calleja, M., & Rodríguez, J. M. (2017). Is place-value processing in four-digit numbers fully automatic? Yes, but not always. Psychonomic Bulletin and Review, 24, 1906–1914. PubMedCrossRefPubMedCentral García-Orza, J., Estudillo, A. J., Calleja, M., & Rodríguez, J. M. (2017). Is place-value processing in four-digit numbers fully automatic? Yes, but not always. Psychonomic Bulletin and Review, 24, 1906–1914. PubMedCrossRefPubMedCentral
go back to reference Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10, 389–395. CrossRef Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10, 389–395. CrossRef
go back to reference Huber, S., Bahnmueller, J., Klein, E., & Moeller, K. (2015a). Testing a model of componential processing of multi-symbol numbers—evidence from measurement units. Psychonomic Bulletin & Review, 22, 1417–1423. CrossRef Huber, S., Bahnmueller, J., Klein, E., & Moeller, K. (2015a). Testing a model of componential processing of multi-symbol numbers—evidence from measurement units. Psychonomic Bulletin & Review, 22, 1417–1423. CrossRef
go back to reference Huber, S., Cornelsen, S., Moeller, K., & Nuerk, H. C. (2015b). Toward a model framework of generalized parallel componential processing of multi-symbol numbers. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 732. PubMedPubMedCentral Huber, S., Cornelsen, S., Moeller, K., & Nuerk, H. C. (2015b). Toward a model framework of generalized parallel componential processing of multi-symbol numbers. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 732. PubMedPubMedCentral
go back to reference Huber, S., Nuerk, H. C., Willmes, K., & Moeller, K. (2016). A general model framework for multi-symbol number comparison. Psychological Review, 123, 667–695. PubMedCrossRefPubMedCentral Huber, S., Nuerk, H. C., Willmes, K., & Moeller, K. (2016). A general model framework for multi-symbol number comparison. Psychological Review, 123, 667–695. PubMedCrossRefPubMedCentral
go back to reference Işık, C., Kar, T., Yalçın, T., & Zehir, K. (2011). Prospective teachers’ skills in problem posing with regard to different problem posing models. Procedia-Social and Behavioral Sciences, 15, 485–489. CrossRef Işık, C., Kar, T., Yalçın, T., & Zehir, K. (2011). Prospective teachers’ skills in problem posing with regard to different problem posing models. Procedia-Social and Behavioral Sciences, 15, 485–489. CrossRef
go back to reference Iuculano, T., & Butterworth, B. (2011). Rapid communication: Understanding the real value of fractions and decimals. The Quarterly Journal of Experimental Psychology, 64, 2088–2098. PubMedCrossRefPubMedCentral Iuculano, T., & Butterworth, B. (2011). Rapid communication: Understanding the real value of fractions and decimals. The Quarterly Journal of Experimental Psychology, 64, 2088–2098. PubMedCrossRefPubMedCentral
go back to reference İymen, E., & Duatepe-Paksu, A. (2015). Analysis of 8th grade students' number sense related to the exponents in terms of number sense components. Education & Science/Egitim Ve Bilim, 40(177), 109–125. İymen, E., & Duatepe-Paksu, A. (2015). Analysis of 8th grade students' number sense related to the exponents in terms of number sense components. Education & Science/Egitim Ve Bilim, 40(177), 109–125.
go back to reference Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press. Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press.
go back to reference Kallai, A. Y., & Tzelgov, J. (2009). A generalized fraction: An entity smaller than one on the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35, 1845–1864. PubMedPubMedCentral Kallai, A. Y., & Tzelgov, J. (2009). A generalized fraction: An entity smaller than one on the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35, 1845–1864. PubMedPubMedCentral
go back to reference Kallai, A. Y., & Tzelgov, J. (2012). The place-value of a digit in multi-digit numbers is processed automatically. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1221–1233. PubMedPubMedCentral Kallai, A. Y., & Tzelgov, J. (2012). The place-value of a digit in multi-digit numbers is processed automatically. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1221–1233. PubMedPubMedCentral
go back to reference Korvorst, M., & Damian, M. F. (2008). The differential influence of decades and units on multidigit number comparison. The Quarterly Journal of Experimental Psychology, 61, 1250–1264. PubMedCrossRefPubMedCentral Korvorst, M., & Damian, M. F. (2008). The differential influence of decades and units on multidigit number comparison. The Quarterly Journal of Experimental Psychology, 61, 1250–1264. PubMedCrossRefPubMedCentral
go back to reference LeFevre, J.-A., Shanahan, T., & DeStefano, D. (2004). The tie effect in simple arithmetic: An access-based account. Memory & Cognition, 32, 1019–1031. CrossRef LeFevre, J.-A., Shanahan, T., & DeStefano, D. (2004). The tie effect in simple arithmetic: An access-based account. Memory & Cognition, 32, 1019–1031. CrossRef
go back to reference Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527. CrossRef Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527. CrossRef
go back to reference Meert, G., Grégoire, J., & Noël, M. (2009). Rational numbers: Componential versus holistic representation of fractions in a magnitude comparison task. The Quarterly Journal of Experimental Psychology, 62, 1598–1616. PubMedCrossRefPubMedCentral Meert, G., Grégoire, J., & Noël, M. (2009). Rational numbers: Componential versus holistic representation of fractions in a magnitude comparison task. The Quarterly Journal of Experimental Psychology, 62, 1598–1616. PubMedCrossRefPubMedCentral
go back to reference Menon, R. (2004). Preservice teachers' number sense. Focus on Learning Problems in Mathematics, 26(2), 49–61. Menon, R. (2004). Preservice teachers' number sense. Focus on Learning Problems in Mathematics, 26(2), 49–61.
go back to reference Meert, G., Gregoire, J., & Noel, M. P. (2010a). Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds. Journal of Experimental Child Psychology, 107, 244–259. PubMedCrossRefPubMedCentral Meert, G., Gregoire, J., & Noel, M. P. (2010a). Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds. Journal of Experimental Child Psychology, 107, 244–259. PubMedCrossRefPubMedCentral
go back to reference Meert, G., Gregoire, J., & Noel, M. P. (2010b). Comparing 5/7 and 2/9: Adults can do it by accessing the magnitude of the whole fraction. Acta Psychologica, 135, 284–292. PubMedCrossRefPubMedCentral Meert, G., Gregoire, J., & Noel, M. P. (2010b). Comparing 5/7 and 2/9: Adults can do it by accessing the magnitude of the whole fraction. Acta Psychologica, 135, 284–292. PubMedCrossRefPubMedCentral
go back to reference Meyerhoff, H. S., Moeller, K., Debus, K., & Nuerk, H. C. (2012). Multi-digit number processing beyond the two-digit number range: A combination of sequential and parallel processes. Acta Psychologica, 140, 81–90. PubMedCrossRefPubMedCentral Meyerhoff, H. S., Moeller, K., Debus, K., & Nuerk, H. C. (2012). Multi-digit number processing beyond the two-digit number range: A combination of sequential and parallel processes. Acta Psychologica, 140, 81–90. PubMedCrossRefPubMedCentral
go back to reference Mohamed, M., & Johnny, J. (2010). Investigating number sense among students. Procedia-Social and Behavioral Sciences, 8, 317–324. CrossRef Mohamed, M., & Johnny, J. (2010). Investigating number sense among students. Procedia-Social and Behavioral Sciences, 8, 317–324. CrossRef
go back to reference Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. PubMedCrossRef Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. PubMedCrossRef
go back to reference Mullet, E., & Cheminat, Y. (1995). Estimation of exponential expressions by high school students. Contemporary Educational Psychology, 20(4), 451–456. CrossRef Mullet, E., & Cheminat, Y. (1995). Estimation of exponential expressions by high school students. Contemporary Educational Psychology, 20(4), 451–456. CrossRef
go back to reference Nuerk, H., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line: A review of multi-digit number processing. Zeitschrift Für Psychologie/Journal of Psychology, 219(1), 3–22. CrossRef Nuerk, H., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line: A review of multi-digit number processing. Zeitschrift Für Psychologie/Journal of Psychology, 219(1), 3–22. CrossRef
go back to reference Nuerk, H., Moeller, K., & Willmes, K. (2015). Multi-digit number processing: Overview, conceptual clarifications, and language influences. In: R. Cohen Kadosh, and A. Dowker (Eds ), The Oxford Handbook of Numerical Cognition. New York, NY: Oxford University Press. Nuerk, H., Moeller, K., & Willmes, K. (2015). Multi-digit number processing: Overview, conceptual clarifications, and language influences. In: R. Cohen Kadosh, and A. Dowker (Eds ), The Oxford Handbook of Numerical Cognition. New York, NY: Oxford University Press.
go back to reference Nuerk, H., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–33. PubMedCrossRefPubMedCentral Nuerk, H., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–33. PubMedCrossRefPubMedCentral
go back to reference Nuerk, H., & Willmes, K. (2005). On the magnitude representations of two-digit numbers. Psychology Science, 47, 52–72. Nuerk, H., & Willmes, K. (2005). On the magnitude representations of two-digit numbers. Psychology Science, 47, 52–72.
go back to reference Pansky, A., & Algom, D. (1999). Stroop and Garner effects in comparative judgment of numerals: The role of attention. Journal of Experimental Psychology: Human Perception and Performance, 25, 39–58. Pansky, A., & Algom, D. (1999). Stroop and Garner effects in comparative judgment of numerals: The role of attention. Journal of Experimental Psychology: Human Perception and Performance, 25, 39–58.
go back to reference Parnes, M., Berger, A., & Tzelgov, J. (2012). Brain representations of negative numbers. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 66, 251–258. PubMedCrossRefPubMedCentral Parnes, M., Berger, A., & Tzelgov, J. (2012). Brain representations of negative numbers. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 66, 251–258. PubMedCrossRefPubMedCentral
go back to reference Perruchet, P., & Vinter, A. (2002). The self-organizing consciousness: A framework for implicit learning. In R. French & A. Cleeremans (Eds.) , Implicit Learning and Consciousness: An Empirical, Philosophical, and Computational Consensus in the Making. New York, NY: Psychology. Perruchet, P., & Vinter, A. (2002). The self-organizing consciousness: A framework for implicit learning. In R. French & A. Cleeremans (Eds.) , Implicit Learning and Consciousness: An Empirical, Philosophical, and Computational Consensus in the Making. New York, NY: Psychology.
go back to reference Pinhas, M., & Tzelgov, J. (2012). Expanding on the mental number line: Zero is perceived as the “smallest”. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1187–1205. PubMedPubMedCentral Pinhas, M., & Tzelgov, J. (2012). Expanding on the mental number line: Zero is perceived as the “smallest”. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1187–1205. PubMedPubMedCentral
go back to reference Pinhas, M., Tzelgov, J., & Guata-Yaakobi, I. (2010). Exploring the mental number line via the size congruity effect. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 64, 221–225. PubMedCrossRefPubMedCentral Pinhas, M., Tzelgov, J., & Guata-Yaakobi, I. (2010). Exploring the mental number line via the size congruity effect. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 64, 221–225. PubMedCrossRefPubMedCentral
go back to reference Pitta-Pantazi, D., Christou, C., & Zachariades, T. (2007). Secondary school students’ levels of understanding in computing exponents. The Journal of Mathematical Behavior, 26(4), 301–311. CrossRef Pitta-Pantazi, D., Christou, C., & Zachariades, T. (2007). Secondary school students’ levels of understanding in computing exponents. The Journal of Mathematical Behavior, 26(4), 301–311. CrossRef
go back to reference Reys, R., Reys, B., Emanuelsson, G., Johansson, B., McIntosh, A., & Yang, D. C. (1999). Assessing number sense of students in Australia, Sweden, Taiwan, and the United States. School Science and Mathematics, 99(2), 61–70. CrossRef Reys, R., Reys, B., Emanuelsson, G., Johansson, B., McIntosh, A., & Yang, D. C. (1999). Assessing number sense of students in Australia, Sweden, Taiwan, and the United States. School Science and Mathematics, 99(2), 61–70. CrossRef
go back to reference Robson, D. S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics, 15, 187–191. CrossRef Robson, D. S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics, 15, 187–191. CrossRef
go back to reference Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16, 225–237. PubMedCrossRefPubMedCentral Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16, 225–237. PubMedCrossRefPubMedCentral
go back to reference Sastre, M. T. M., & Mullet, E. (1998). Evolution of the intuitive mastery of the relationship between base, exponent, and number magnitude in high-school students. Mathematical Cognition, 4(1), 67–77. CrossRef Sastre, M. T. M., & Mullet, E. (1998). Evolution of the intuitive mastery of the relationship between base, exponent, and number magnitude in high-school students. Mathematical Cognition, 4(1), 67–77. CrossRef
go back to reference Schwarz, W., & Ischebeck, A. (2003). On the relative speed account of number-size interference in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29, 507–522. PubMedPubMedCentral Schwarz, W., & Ischebeck, A. (2003). On the relative speed account of number-size interference in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29, 507–522. PubMedPubMedCentral
go back to reference Shaki, S., & Petrusic, W. M. (2005). On the mental representation of negative numbers: Context-dependent SNARC effects with comparative judgments. Psychonomic Bulletin and Review, 12, 931–937. PubMedCrossRefPubMedCentral Shaki, S., & Petrusic, W. M. (2005). On the mental representation of negative numbers: Context-dependent SNARC effects with comparative judgments. Psychonomic Bulletin and Review, 12, 931–937. PubMedCrossRefPubMedCentral
go back to reference Stango, V., & Zinman, J. (2009). Exponential growth bias and household finance. Journal of Finance, 64, 2807–2849. CrossRef Stango, V., & Zinman, J. (2009). Exponential growth bias and household finance. Journal of Finance, 64, 2807–2849. CrossRef
go back to reference Timmers, H., & Wagenaar, W. A. (1977). Inverse statistics and misperception of exponential growth. Perception and Psychophysics, 21, 558–562. CrossRef Timmers, H., & Wagenaar, W. A. (1977). Inverse statistics and misperception of exponential growth. Perception and Psychophysics, 21, 558–562. CrossRef
go back to reference Tzelgov, J. (1997). Automatic but conscious: That is how we act most of the time. Advances in Social Cognition, 10, 217–230. Tzelgov, J. (1997). Automatic but conscious: That is how we act most of the time. Advances in Social Cognition, 10, 217–230.
go back to reference Tzelgov, J., & Ganor-Stern, D. (2005). Automaticity in processing ordinal information. In: Campbell, J. I. D. (Ed.), Handbook of Mathematical Cognition. New York, NY: Psychology Press. Tzelgov, J., & Ganor-Stern, D. (2005). Automaticity in processing ordinal information. In: Campbell, J. I. D. (Ed.), Handbook of Mathematical Cognition. New York, NY: Psychology Press.
go back to reference Tzelgov, J., Ganor-Stern, D., & Maymon-Schreiber, K. (2009). The representation of negative numbers: Exploring the effects of mode of processing and notation. The Quarterly Journal of Experimental Psychology, 62, 605–624. PubMedCrossRefPubMedCentral Tzelgov, J., Ganor-Stern, D., & Maymon-Schreiber, K. (2009). The representation of negative numbers: Exploring the effects of mode of processing and notation. The Quarterly Journal of Experimental Psychology, 62, 605–624. PubMedCrossRefPubMedCentral
go back to reference Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 166–179. Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 166–179.
go back to reference Varma, S., & Karl, S. R. (2013). Understanding decimal proportions: Discrete representations, parallel access, and privileged processing of zero. Cognitive Psychology, 66, 283–301. PubMedCrossRefPubMedCentral Varma, S., & Karl, S. R. (2013). Understanding decimal proportions: Discrete representations, parallel access, and privileged processing of zero. Cognitive Psychology, 66, 283–301. PubMedCrossRefPubMedCentral
go back to reference Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: An abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385. PubMedCrossRefPubMedCentral Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: An abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385. PubMedCrossRefPubMedCentral
go back to reference Wagenaar, W. A. (1982). Misperception of exponential growth and the psychological magnitude of numbers. In B. Wegener (Ed.), Social attitudes and psychophysical measurement. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. Wagenaar, W. A. (1982). Misperception of exponential growth and the psychological magnitude of numbers. In B. Wegener (Ed.), Social attitudes and psychophysical measurement. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
go back to reference Wagenaar, W. A., & Sagaria, S. D. (1975). Misperception of exponential growth. Perception and Psychophysics, 18, 416–422. CrossRef Wagenaar, W. A., & Sagaria, S. D. (1975). Misperception of exponential growth. Perception and Psychophysics, 18, 416–422. CrossRef
go back to reference Wagenaar, W. (1978) Intuitive Prediction of Growth. In Burkhardt, D, and W. Ittelson (eds.), Environmental Assessment of Socioeconomic Systems. New York: Plenum. Wagenaar, W. (1978) Intuitive Prediction of Growth. In Burkhardt, D, and W. Ittelson (eds.), Environmental Assessment of Socioeconomic Systems. New York: Plenum.
go back to reference Wagenaar, W. A., & Timmers, H. (1979). The pond-and-duckweed problem; three experiments on the misperception of exponential growth. Acta Psychologica, 43, 239–251. CrossRef Wagenaar, W. A., & Timmers, H. (1979). The pond-and-duckweed problem; three experiments on the misperception of exponential growth. Acta Psychologica, 43, 239–251. CrossRef
go back to reference Yang, D. (2005). Number sense strategies used by 6th-grade students in taiwan. Educational Studies, 31, 317–333. CrossRef Yang, D. (2005). Number sense strategies used by 6th-grade students in taiwan. Educational Studies, 31, 317–333. CrossRef
go back to reference Zhang, J., Feng, W., & Zhang, Z. (2019). Holistic representation of negative numbers: Evidence from duration comparison tasks. Acta Psychologica, 193, 123–131. PubMedCrossRefPubMedCentral Zhang, J., Feng, W., & Zhang, Z. (2019). Holistic representation of negative numbers: Evidence from duration comparison tasks. Acta Psychologica, 193, 123–131. PubMedCrossRefPubMedCentral
Metagegevens
Titel
No power: exponential expressions are not processed automatically as such
Auteurs
Ami Feder
Mariya Lozin
Michal Pinhas
Publicatiedatum
23-07-2020
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01381-6