Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Psychological Research 1/2017

26-12-2015 | Original Article

Evidence for distinct magnitude systems for symbolic and non-symbolic number

Auteurs: Delphine Sasanguie, Bert De Smedt, Bert Reynvoet

Gepubliceerd in: Psychological Research | Uitgave 1/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Cognitive models of magnitude representation are mostly based on the results of studies that use a magnitude comparison task. These studies show similar distance or ratio effects in symbolic (Arabic numerals) and non-symbolic (dot arrays) variants of the comparison task, suggesting a common abstract magnitude representation system for processing both symbolic and non-symbolic numerosities. Recently, however, it has been questioned whether the comparison task really indexes a magnitude representation. Alternatively, it has been hypothesized that there might be different representations of magnitude: an exact representation for symbolic magnitudes and an approximate representation for non-symbolic numerosities. To address the question whether distinct magnitude systems exist, we used an audio–visual matching paradigm in two experiments to explore the relationship between symbolic and non-symbolic magnitude processing. In Experiment 1, participants had to match visually and auditory presented numerical stimuli in different formats (digits, number words, dot arrays, tone sequences). In Experiment 2, they were instructed only to match the stimuli after processing the magnitude first. The data of our experiments show different results for non-symbolic and symbolic number and are difficult to reconcile with the existence of one abstract magnitude representation. Rather, they suggest the existence of two different systems for processing magnitude, i.e., an exact symbolic system next to an approximate non-symbolic system.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
Because Experiment 1 also contains two conditions/tasks in which participants have to match a non-symbolic and a symbolic number, the results regarding the ratio effects may also be informative for (a)symmetry of mapping between non-symbolic and symbolic number, an issue addressed previously by, e.g., Mundy and Gilmore (2009). These authors showed smaller REs for non-symbolic-to-symbolic mapping than for symbolic-to-non-symbolic mapping in children. In contrast, in our study, accuracy results demonstrated a larger RE in the tones-digit matching task (i.e., the condition in which the non-symbolic stimulus was presented first) compared to the number word-dots matching task (symbolic stimulus presented first), t(33) = 7.440, p < .0001. However, our results are inconclusive regarding the issue of asymmetry in mapping because both conditions not only differ regarding the firstly presented number (symbolic versus non-symbolic), but also the modality of the non-symbolic number is different. In order to ensure that the differences between our two mixed conditions are due to the direction of mapping, it should be examined whether visual dots and auditory tones are represented equally precise by the analog magnitude system. Future research should address this issue.
 
2
In the analyses including the RT data of the tones–dots matching task, 1 participant dropped out because (s)he performed erroneously on all trials of certain conditions. Overall, however, this participant was not an outlier.
 
Literatuur
go back to reference Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86, 201–221. CrossRefPubMed Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86, 201–221. CrossRefPubMed
go back to reference Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102, 14116–14121. CrossRefPubMedPubMedCentral Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102, 14116–14121. CrossRefPubMedPubMedCentral
go back to reference Bulthé, J., De Smedt, B., & Op de Beeck, H. P. (2014). Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses. NeuroImage, 87, 311–322. CrossRefPubMed Bulthé, J., De Smedt, B., & Op de Beeck, H. P. (2014). Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses. NeuroImage, 87, 311–322. CrossRefPubMed
go back to reference Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534–541. CrossRefPubMed Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534–541. CrossRefPubMed
go back to reference Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 401–406. CrossRefPubMed Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 401–406. CrossRefPubMed
go back to reference Carey, S. (2009). The Origin of Concepts. Oxford: Oxford University Press. CrossRef Carey, S. (2009). The Origin of Concepts. Oxford: Oxford University Press. CrossRef
go back to reference Chiao, J. Y., Bordeaux, A. R., & Ambady, N. (2004). Mental representations of social status. Cognition, 93, 49–57. CrossRef Chiao, J. Y., Bordeaux, A. R., & Ambady, N. (2004). Mental representations of social status. Cognition, 93, 49–57. CrossRef
go back to reference Cohen, D. (2009). Integers do not automatically activate their magnitude representation. Psychonomic Bulletin, & Review, 16, 332–336. CrossRef Cohen, D. (2009). Integers do not automatically activate their magnitude representation. Psychonomic Bulletin, & Review, 16, 332–336. CrossRef
go back to reference Cohen Kadosh, R., Bahrami, B., Walsh, V., Butterworth, B., Popescu, T., & Price, C. (2011). Specialization in the human brain: the case of numbers. Frontiers in Human Neuroscience, 5, 1–9. Cohen Kadosh, R., Bahrami, B., Walsh, V., Butterworth, B., Popescu, T., & Price, C. (2011). Specialization in the human brain: the case of numbers. Frontiers in Human Neuroscience, 5, 1–9.
go back to reference Cohen Kadosh, R., Brodsky, W., Levin, M., & Henik, A. (2008). Mental representation: what can pitch tell us about the distance effect? Cortex, 44, 470–477. CrossRefPubMed Cohen Kadosh, R., Brodsky, W., Levin, M., & Henik, A. (2008). Mental representation: what can pitch tell us about the distance effect? Cortex, 44, 470–477. CrossRefPubMed
go back to reference Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation- dependent and independent representations of numbers in the parietal lobes. Neuron, 53, 307–314. CrossRefPubMed Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation- dependent and independent representations of numbers in the parietal lobes. Neuron, 53, 307–314. CrossRefPubMed
go back to reference Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin, & Review, 8, 698–707. CrossRef Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin, & Review, 8, 698–707. CrossRef
go back to reference De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). The relationship between symbolic and non-symbolic numerical magnitude processing and the typical and atypical development of mathematics: a review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55. CrossRef De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). The relationship between symbolic and non-symbolic numerical magnitude processing and the typical and atypical development of mathematics: a review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55. CrossRef
go back to reference Defever, E., Reynvoet, B., & Gebuis, T. (2013). Task and age dependent effects of visual stimulus properties on children’s explicit numerosity judgments. Journal of Experimental Child Psychology, 116, 216–233. CrossRefPubMed Defever, E., Reynvoet, B., & Gebuis, T. (2013). Task and age dependent effects of visual stimulus properties on children’s explicit numerosity judgments. Journal of Experimental Child Psychology, 116, 216–233. CrossRefPubMed
go back to reference Defever, E., Sasanguie, D., Vandewaetere, M., & Reynvoet, B. (2012). What can the same- different task tell us about the development of magnitude representations? Acta Psychologica, 140(1), 35–42. CrossRefPubMed Defever, E., Sasanguie, D., Vandewaetere, M., & Reynvoet, B. (2012). What can the same- different task tell us about the development of magnitude representations? Acta Psychologica, 140(1), 35–42. CrossRefPubMed
go back to reference Dehaene, S. (1997). The Number Sense. Oxford: Oxford University Press. Dehaene, S. (1997). The Number Sense. Oxford: Oxford University Press.
go back to reference Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.
go back to reference Eger, E., Sterzer, P., Russ, M. O., Giraud, A.-L., & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37, 719–725. CrossRefPubMed Eger, E., Sterzer, P., Russ, M. O., Giraud, A.-L., & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37, 719–725. CrossRefPubMed
go back to reference Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. CrossRefPubMed Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. CrossRefPubMed
go back to reference Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981–986. CrossRefPubMed Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981–986. CrossRefPubMed
go back to reference Gebuis, T., & Reynvoet, B. (2012a). The interplay between visual cues and non-symbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648. CrossRef Gebuis, T., & Reynvoet, B. (2012a). The interplay between visual cues and non-symbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648. CrossRef
go back to reference Gebuis, T., Reynvoet, B. (2012b). The role of visual information in numerosity estimation. PLoS One, 7(5), Article No. e37426 (epub). Gebuis, T., Reynvoet, B. (2012b). The role of visual information in numerosity estimation. PLoS One, 7(5), Article No. e37426 (epub).
go back to reference Goldfarb, L., Henik, A., Rubinsten, O., Bloch-David, Y., & Gertner, L. (2011). The numerical distance effect is task dependent. Memory, & Cognition, 39, 1508–1517. CrossRef Goldfarb, L., Henik, A., Rubinsten, O., Bloch-David, Y., & Gertner, L. (2011). The numerical distance effect is task dependent. Memory, & Cognition, 39, 1508–1517. CrossRef
go back to reference Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: the Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457–1465. CrossRefPubMed Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: the Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457–1465. CrossRefPubMed
go back to reference Holloway, I. D., & Ansari, D. (2008). Domain-specific and domain-general changes in children’s development of number comparison. Developmental Science, 11, 644–649. CrossRefPubMed Holloway, I. D., & Ansari, D. (2008). Domain-specific and domain-general changes in children’s development of number comparison. Developmental Science, 11, 644–649. CrossRefPubMed
go back to reference Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29. CrossRefPubMed Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29. CrossRefPubMed
go back to reference Holloway, I. D., & Ansari, D. (2010). Developmental specialization in the right intraparietal sulcus for the abstract representation of numerical magnitude. Journal of Cognitive Neuroscience, 22, 2627–2637. CrossRefPubMed Holloway, I. D., & Ansari, D. (2010). Developmental specialization in the right intraparietal sulcus for the abstract representation of numerical magnitude. Journal of Cognitive Neuroscience, 22, 2627–2637. CrossRefPubMed
go back to reference Holloway, I. D., van Atteveldt, N., Blomert, L., & Ansari, D. (2013). Orthographic Dependency in the neural correlates of reading: evidence from audiovisual integration in English readers. Cerebral Cortex,. doi: 10.​1093/​cercor/​bht347. (epub ahead of print). PubMed Holloway, I. D., van Atteveldt, N., Blomert, L., & Ansari, D. (2013). Orthographic Dependency in the neural correlates of reading: evidence from audiovisual integration in English readers. Cerebral Cortex,. doi: 10.​1093/​cercor/​bht347. (epub ahead of print). PubMed
go back to reference Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences of the United States of America, 103, 19599–19604. CrossRefPubMedPubMedCentral Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences of the United States of America, 103, 19599–19604. CrossRefPubMedPubMedCentral
go back to reference Hyde, D. C., & Spelke, E. S. (2009). All numbers are not equal: an electrophysiological investigation of small and large number representations. Journal of Cognitive Neuroscience, 21, 1039–1053. CrossRefPubMedPubMedCentral Hyde, D. C., & Spelke, E. S. (2009). All numbers are not equal: an electrophysiological investigation of small and large number representations. Journal of Cognitive Neuroscience, 21, 1039–1053. CrossRefPubMedPubMedCentral
go back to reference Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395–438. CrossRefPubMed Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395–438. CrossRefPubMed
go back to reference Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic Estrangement: evidence against a strong association between numerical symbols and the quantities they represent. Journal of Experimental Psychology: General, 141, 635–641. CrossRef Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic Estrangement: evidence against a strong association between numerical symbols and the quantities they represent. Journal of Experimental Psychology: General, 141, 635–641. CrossRef
go back to reference Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. CrossRefPubMed Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. CrossRefPubMed
go back to reference Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490–502. CrossRefPubMed Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490–502. CrossRefPubMed
go back to reference Noël, M.-P., & Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: an explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5(165), 1–4. Noël, M.-P., & Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: an explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5(165), 1–4.
go back to reference Notebaert, K., Pesenti, M., & Reynvoet, B. (2010). The neural origin of the priming distance effect: distance-dependent recovery of parietal activation using symbolic magnitudes. Human Brain Mapping, 31, 669–677. CrossRefPubMed Notebaert, K., Pesenti, M., & Reynvoet, B. (2010). The neural origin of the priming distance effect: distance-dependent recovery of parietal activation using symbolic magnitudes. Human Brain Mapping, 31, 669–677. CrossRefPubMed
go back to reference Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293–305. CrossRefPubMed Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293–305. CrossRefPubMed
go back to reference Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 91, 191–205. Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 91, 191–205.
go back to reference Rousselle, L., & Noël, M.-P. (2008). The development of automatic numerosity processing in preschoolers: evidence for numerosity-perceptual interference. Developmental Psychology, 44, 544–560. CrossRefPubMed Rousselle, L., & Noël, M.-P. (2008). The development of automatic numerosity processing in preschoolers: evidence for numerosity-perceptual interference. Developmental Psychology, 44, 544–560. CrossRefPubMed
go back to reference Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergartners. The Quarterly Journal of Experimental Psychology, 67, 271–280. CrossRefPubMed Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergartners. The Quarterly Journal of Experimental Psychology, 67, 271–280. CrossRefPubMed
go back to reference Sasanguie, D., Göbel, S., Moll, K., Smets, K., & Reynvoet, B. (2013). Acuity of the approximate number sense, symbolic number comparison or mapping numbers onto space: what underlies mathematics achievement? Journal of Experimental Child Psychology, 114, 418–431. CrossRefPubMed Sasanguie, D., Göbel, S., Moll, K., Smets, K., & Reynvoet, B. (2013). Acuity of the approximate number sense, symbolic number comparison or mapping numbers onto space: what underlies mathematics achievement? Journal of Experimental Child Psychology, 114, 418–431. CrossRefPubMed
go back to reference Sasanguie, D. De, Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344–357. CrossRefPubMed Sasanguie, D. De, Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344–357. CrossRefPubMed
go back to reference Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. (2015). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science (in press). Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. (2015). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science (in press).
go back to reference Sophian, C., & Chu, Y. (2008). How do people apprehend large numerosities? Cognition, 107, 460–478. CrossRefPubMed Sophian, C., & Chu, Y. (2008). How do people apprehend large numerosities? Cognition, 107, 460–478. CrossRefPubMed
go back to reference Tibber, M. S., Greenwood, J. A., & Dakin, S. C. (2012). Number and density discrimination rely on a common metric: similar psychophysical effects of size, contrast, and divided attention. Journal of Vision, 12, 8. CrossRefPubMed Tibber, M. S., Greenwood, J. A., & Dakin, S. C. (2012). Number and density discrimination rely on a common metric: similar psychophysical effects of size, contrast, and divided attention. Journal of Vision, 12, 8. CrossRefPubMed
go back to reference Tokita, M., & Ishiguchi, A. (2010). How might the discrepancy in the effects of perceptual variables on numerosity judgment be reconciled? Attention, Perception, & Psychophysics, 72, 1839–1853. CrossRef Tokita, M., & Ishiguchi, A. (2010). How might the discrepancy in the effects of perceptual variables on numerosity judgment be reconciled? Attention, Perception, & Psychophysics, 72, 1839–1853. CrossRef
go back to reference Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80–102. CrossRefPubMed Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80–102. CrossRefPubMed
go back to reference Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: priming and comparison distance effects in numerical and nonnumerical orders. Psychonomic Bulletin, & Review, 15, 419–425. CrossRef Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: priming and comparison distance effects in numerical and nonnumerical orders. Psychonomic Bulletin, & Review, 15, 419–425. CrossRef
go back to reference Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: the same–different task. Journal of Cognitive Psychology, 23, 112–120. CrossRef Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: the same–different task. Journal of Cognitive Psychology, 23, 112–120. CrossRef
Metagegevens
Titel
Evidence for distinct magnitude systems for symbolic and non-symbolic number
Auteurs
Delphine Sasanguie
Bert De Smedt
Bert Reynvoet
Publicatiedatum
26-12-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2017
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0734-1

Andere artikelen Uitgave 1/2017

Psychological Research 1/2017 Naar de uitgave