Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2017

02-01-2016 | Original Article

The influence of natural contour and face size on the spatial frequency tuning for identifying upright and inverted faces

Auteurs: Jessica Royer, Verena Willenbockel, Caroline Blais, Frédéric Gosselin, Sandra Lafortune, Josiane Leclerc, Daniel Fiset

Gepubliceerd in: Psychological Research | Uitgave 1/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

It has previously been proposed that holistic face processing is based on low spatial frequencies (SFs) whereas featural processing relies on higher SFs, a hypothesis still widespread in the face processing literature today (e.g. Peters et al. in Eur J Neurosci 37(9):1448–1457, 2013). Since upright faces are supposedly recognized through holistic processing and inverted faces, using features, it is easy to take the leap to suggest a qualitatively different SF tuning for the identification of upright and vs. inverted faces. However, two independent studies (e.g. Gaspar et al. in Vision Res 48(28):2817–2826, 2008; Willenbockel et al. in J Exp Psychol Human 36(1):122–135, 2010a) found the same SF tuning for both stimulus presentations. Since these authors used relatively small faces hiding the natural facial contour, it is possible that differences in the SF tuning for identifying upright and inverted faces were missed. The present study thus revisits the SF tuning for upright and inverted faces face identification using the SF Bubbles technique. Our results still indicate that the same SFs are involved in both upright and inverted face recognition regardless of these additional parameters (contour and size), thus contrasting with previous data obtained using different methods (e.g. Oruc and Barton in J Vis 10(12):20, 1–12, 2010). The possible reasons subtending this divergence are discussed.
Literatuur
go back to reference Boutet, I., Collin, C., & Faubert, J. (2003). Configural face encoding and spatial frequency information. Perception and Psychophysics, 65(7), 1078–1093.CrossRefPubMed Boutet, I., Collin, C., & Faubert, J. (2003). Configural face encoding and spatial frequency information. Perception and Psychophysics, 65(7), 1078–1093.CrossRefPubMed
go back to reference Butler, S., Blais, C., Gosselin, F., Bub, D., & Fiset, D. (2010). Recognizing famous people. Attention, Perception, & Psychophysics, 72(6), 1444–1449.CrossRef Butler, S., Blais, C., Gosselin, F., Bub, D., & Fiset, D. (2010). Recognizing famous people. Attention, Perception, & Psychophysics, 72(6), 1444–1449.CrossRef
go back to reference Chan, J. P., & Ryan, J. D. (2012). Holistic representations of internal and external face features are used to support recognition. Frontiers in Psychology, 3, 87.PubMedPubMedCentral Chan, J. P., & Ryan, J. D. (2012). Holistic representations of internal and external face features are used to support recognition. Frontiers in Psychology, 3, 87.PubMedPubMedCentral
go back to reference Chauvin, A., Worsley, K. J., Schyns, P. G., Arguin, M., & Gosselin, F. (2005). Accurate statistical tests for smooth classification images. Journal of Vision, 5(9), 659–667.CrossRefPubMed Chauvin, A., Worsley, K. J., Schyns, P. G., Arguin, M., & Gosselin, F. (2005). Accurate statistical tests for smooth classification images. Journal of Vision, 5(9), 659–667.CrossRefPubMed
go back to reference Collin, C. A., Rainville, S., Watier, N., & Boutet, I. (2014). Configural and featural discriminations use the same spatial frequencies: A model observer versus human observer analysis. Perception, 43(6), 509–526.CrossRefPubMed Collin, C. A., Rainville, S., Watier, N., & Boutet, I. (2014). Configural and featural discriminations use the same spatial frequencies: A model observer versus human observer analysis. Perception, 43(6), 509–526.CrossRefPubMed
go back to reference Collishaw, S. M., & Hole, G. J. (2000). Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29(8), 893–909.CrossRefPubMed Collishaw, S. M., & Hole, G. J. (2000). Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29(8), 893–909.CrossRefPubMed
go back to reference Dakin, S. C., & Watt, R. J. (2009). Biological “bar codes” in human faces. Journal of Vision, 9(4):2, 1–10. Dakin, S. C., & Watt, R. J. (2009). Biological “bar codes” in human faces. Journal of Vision, 9(4):2, 1–10.
go back to reference De Valois, R. L., & De Valois, K. K. (1990). Spatial vision. New York: Oxford University Press. De Valois, R. L., & De Valois, K. K. (1990). Spatial vision. New York: Oxford University Press.
go back to reference Dobkins, K. R., & Harms, R. (2014). The face inversion effect in infants is driven by high, and not low, spatial frequencies. Journal of Vision, 14(1), 1, 1–17. Dobkins, K. R., & Harms, R. (2014). The face inversion effect in infants is driven by high, and not low, spatial frequencies. Journal of Vision, 14(1), 1, 1–17.
go back to reference Ellis, H. D., Shepherd, J. W., & Davies, G. M. (1979). Identification of familiar and unfamiliar faces from internal and external features: Some implications for theories of face recognition. Perception, 8(4), 431–439.CrossRefPubMed Ellis, H. D., Shepherd, J. W., & Davies, G. M. (1979). Identification of familiar and unfamiliar faces from internal and external features: Some implications for theories of face recognition. Perception, 8(4), 431–439.CrossRefPubMed
go back to reference Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628–634.PubMed Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628–634.PubMed
go back to reference Gaspar, C., Sekuler, A. B., & Bennett, P. J. (2008). Spatial frequency tuning of upright and inverted face identification. Vision Research, 48(28), 2817–2826.CrossRefPubMed Gaspar, C., Sekuler, A. B., & Bennett, P. J. (2008). Spatial frequency tuning of upright and inverted face identification. Vision Research, 48(28), 2817–2826.CrossRefPubMed
go back to reference Goffaux, V., & Dakin, S. C. (2010). Horizontal information drives the behavioral signatures of face processing. Frontiers in Psychology, 1, 143.PubMedPubMedCentral Goffaux, V., & Dakin, S. C. (2010). Horizontal information drives the behavioral signatures of face processing. Frontiers in Psychology, 1, 143.PubMedPubMedCentral
go back to reference Goffaux, V., Hault, B., Michel, C., Vuong, Q. C., & Rossion, B. (2005). The respective role of low and high spatial frequencies in supporting configural and featural processing of faces. Perception, 34(1), 77–86.CrossRefPubMed Goffaux, V., Hault, B., Michel, C., Vuong, Q. C., & Rossion, B. (2005). The respective role of low and high spatial frequencies in supporting configural and featural processing of faces. Perception, 34(1), 77–86.CrossRefPubMed
go back to reference Goffaux, V., & Rossion, B. (2006). Faces are “spatial”—Holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1023–1039.PubMed Goffaux, V., & Rossion, B. (2006). Faces are “spatial”—Holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1023–1039.PubMed
go back to reference Goffaux, V., van Zon, J., & Schiltz, C. (2011). The horizontal tuning of face perception relies on the processing of intermediate and high spatial frequencies. Journal of Vision, 11(10), 1, 1–9. Goffaux, V., van Zon, J., & Schiltz, C. (2011). The horizontal tuning of face perception relies on the processing of intermediate and high spatial frequencies. Journal of Vision, 11(10), 1, 1–9.
go back to reference Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Identification of band-pass filtered letters and faces by human and ideal observers. Vision Research, 39(21), 3537–3560.CrossRefPubMed Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Identification of band-pass filtered letters and faces by human and ideal observers. Vision Research, 39(21), 3537–3560.CrossRefPubMed
go back to reference Gold, J. M., Mundy, P. J., & Tjan, B. S. (2012). The perception of a face is no more than the sum of its parts. Psychological Science, 23(4), 427–434.CrossRefPubMedPubMedCentral Gold, J. M., Mundy, P. J., & Tjan, B. S. (2012). The perception of a face is no more than the sum of its parts. Psychological Science, 23(4), 427–434.CrossRefPubMedPubMedCentral
go back to reference Gosselin, F., & Schyns, P. G. (2001). Bubbles: A technique to reveal the use of information in recognition tasks. Vision Research, 41(17), 2261–2271.CrossRefPubMed Gosselin, F., & Schyns, P. G. (2001). Bubbles: A technique to reveal the use of information in recognition tasks. Vision Research, 41(17), 2261–2271.CrossRefPubMed
go back to reference Hills, C., Romano, K., Davies-Thompson, J., & Barton, J. J. (2014). An adaptation study of internal and external features in facial representations. Vision Research, 100, 18–28.CrossRefPubMed Hills, C., Romano, K., Davies-Thompson, J., & Barton, J. J. (2014). An adaptation study of internal and external features in facial representations. Vision Research, 100, 18–28.CrossRefPubMed
go back to reference Maurer, D., Grand, R. L., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(6), 255–260.CrossRefPubMed Maurer, D., Grand, R. L., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(6), 255–260.CrossRefPubMed
go back to reference McKone, E. (2009). Holistic processing for faces operates over a wide range of sizes but is strongest at identification rather than conversational distances. Vision Research, 49(2), 268–283.CrossRefPubMed McKone, E. (2009). Holistic processing for faces operates over a wide range of sizes but is strongest at identification rather than conversational distances. Vision Research, 49(2), 268–283.CrossRefPubMed
go back to reference Näsänen, R. (1999). Spatial frequency bandwidth used in the recognition of facial images. Vision Research, 39(23), 3824–3833.CrossRefPubMed Näsänen, R. (1999). Spatial frequency bandwidth used in the recognition of facial images. Vision Research, 39(23), 3824–3833.CrossRefPubMed
go back to reference Oruç, İ., & Barton, J. J. (2010). Critical frequencies in the perception of letters, faces, and novel shapes: Evidence for limited scale invariance for faces. Journal of Vision, 10(12), 20, 1–12. Oruç, İ., & Barton, J. J. (2010). Critical frequencies in the perception of letters, faces, and novel shapes: Evidence for limited scale invariance for faces. Journal of Vision, 10(12), 20, 1–12.
go back to reference Pachai, M. V., Sekuler, A. B., & Bennett, P. J. (2013). Sensitivity to information conveyed by horizontal contours is correlated with face identification accuracy. Frontiers in psychology, 4:74.CrossRefPubMedPubMedCentral Pachai, M. V., Sekuler, A. B., & Bennett, P. J. (2013). Sensitivity to information conveyed by horizontal contours is correlated with face identification accuracy. Frontiers in psychology, 4:74.CrossRefPubMedPubMedCentral
go back to reference Peli, E., Lee, E., Trempe, C. L., & Buzney, S. (1994). Image enhancement for the visually impaired: The effects of enhancement on face recognition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 11(7), 1929–1939. Peli, E., Lee, E., Trempe, C. L., & Buzney, S. (1994). Image enhancement for the visually impaired: The effects of enhancement on face recognition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 11(7), 1929–1939.
go back to reference Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.CrossRefPubMed Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.CrossRefPubMed
go back to reference Peters, J. C., Vlamings, P., & Kemner, C. (2013). Neural processing of high and low spatial frequency information in faces changes across development: Qualitative changes in face processing during adolescence. European Journal of Neuroscience, 37(9), 1448–1457.CrossRefPubMed Peters, J. C., Vlamings, P., & Kemner, C. (2013). Neural processing of high and low spatial frequency information in faces changes across development: Qualitative changes in face processing during adolescence. European Journal of Neuroscience, 37(9), 1448–1457.CrossRefPubMed
go back to reference Richler, J. J., Mack, M. L., Palmeri, T. J., & Gauthier, I. (2011). Inverted faces are (eventually) processed holistically. Vision Research, 51(3), 333–342.CrossRefPubMed Richler, J. J., Mack, M. L., Palmeri, T. J., & Gauthier, I. (2011). Inverted faces are (eventually) processed holistically. Vision Research, 51(3), 333–342.CrossRefPubMed
go back to reference Riesenhuber, M., Jarudi, I., Gilad, S., & Sinha, P. (2004). Face processing in humans is compatible with a simple shape—based model of vision. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(Suppl 6), S448–S450.CrossRefPubMedPubMedCentral Riesenhuber, M., Jarudi, I., Gilad, S., & Sinha, P. (2004). Face processing in humans is compatible with a simple shape—based model of vision. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(Suppl 6), S448–S450.CrossRefPubMedPubMedCentral
go back to reference Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica, 128(2), 274–289.CrossRefPubMed Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica, 128(2), 274–289.CrossRefPubMed
go back to reference Rossion, B. (2009). Distinguishing the cause and consequence of face inversion: The perceptual field hypothesis. Acta Psychologica, 132(3), 300–312.CrossRefPubMed Rossion, B. (2009). Distinguishing the cause and consequence of face inversion: The perceptual field hypothesis. Acta Psychologica, 132(3), 300–312.CrossRefPubMed
go back to reference Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? Behavioral and Cognitive Neuroscience Reviews, 1(1), 63–75.CrossRefPubMed Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? Behavioral and Cognitive Neuroscience Reviews, 1(1), 63–75.CrossRefPubMed
go back to reference Royer, J., Blais, C., Gosselin, F., Duncan, J., & Fiset, D. (2015). When less is more: Impact of face processing ability on recognition of visually degraded faces. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1179-1183. Royer, J., Blais, C., Gosselin, F., Duncan, J., & Fiset, D. (2015). When less is more: Impact of face processing ability on recognition of visually degraded faces. Journal of Experimental Psychology: Human Perception and Performance41(5), 1179-1183.
go back to reference Sekuler, A. B., Gaspar, C. M., Gold, J. M., & Bennett, P. J. (2004). Inversion leads to quantitative, not qualitative, changes in face processing. Current Biology, 14(5), 391–396.CrossRefPubMed Sekuler, A. B., Gaspar, C. M., Gold, J. M., & Bennett, P. J. (2004). Inversion leads to quantitative, not qualitative, changes in face processing. Current Biology, 14(5), 391–396.CrossRefPubMed
go back to reference Tadros, K., Dupuis-Roy, N., Fiset, D., Arguin, M., & Gosselin (2013). Reading laterally: The cerebral hemispheric use of spatial frequencies in visual word recognition. Journal of Vision, 13(1), 4, 1–12. Tadros, K., Dupuis-Roy, N., Fiset, D., Arguin, M., & Gosselin (2013). Reading laterally: The cerebral hemispheric use of spatial frequencies in visual word recognition. Journal of Vision, 13(1), 4, 1–12.
go back to reference Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. The Quarterly Journal of Experimental Psychology, 46(2), 225–245.CrossRefPubMed Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. The Quarterly Journal of Experimental Psychology, 46(2), 225–245.CrossRefPubMed
go back to reference Thurman, S. M., & Grossman, E. D. (2011). Diagnostic spatial frequencies and human efficiency for discriminating actions. Attention, Perception, & Psychophysics, 73(2), 572–580.CrossRef Thurman, S. M., & Grossman, E. D. (2011). Diagnostic spatial frequencies and human efficiency for discriminating actions. Attention, Perception, & Psychophysics, 73(2), 572–580.CrossRef
go back to reference Valentine, T. (1988). Upside-down faces: A review of the effect of inversion upon face recognition. British Journal of Psychology, 79(4), 471–491.CrossRefPubMed Valentine, T. (1988). Upside-down faces: A review of the effect of inversion upon face recognition. British Journal of Psychology, 79(4), 471–491.CrossRefPubMed
go back to reference Watson, A. B., & Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method. Perception and Psychophysics, 33(2), 113–120.CrossRefPubMed Watson, A. B., & Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method. Perception and Psychophysics, 33(2), 113–120.CrossRefPubMed
go back to reference Willenbockel, V., Fiset, D., Chauvin, A., Blais, C., Arguin, M., Tanaka, J. W., … Gosselin, F. (2010a). Does face inversion change spatial frequency tuning? Journal of Experimental Psychology: Human Perception and Performance, 36(1), 122–135.PubMed Willenbockel, V., Fiset, D., Chauvin, A., Blais, C., Arguin, M., Tanaka, J. W., … Gosselin, F. (2010a). Does face inversion change spatial frequency tuning? Journal of Experimental Psychology: Human Perception and Performance, 36(1), 122–135.PubMed
go back to reference Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010b). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684.CrossRefPubMed Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010b). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684.CrossRefPubMed
go back to reference Willenbockel, V., Lepore, F., Nguyen, D. K., Bouthillier, A., & Gosselin, F. (2012). Spatial frequency tuning during the conscious and non-conscious perception of emotional facial expressions—an intracranial ERP study. Frontiers in Psychology, 3, 237.CrossRefPubMedPubMedCentral Willenbockel, V., Lepore, F., Nguyen, D. K., Bouthillier, A., & Gosselin, F. (2012). Spatial frequency tuning during the conscious and non-conscious perception of emotional facial expressions—an intracranial ERP study. Frontiers in Psychology, 3, 237.CrossRefPubMedPubMedCentral
go back to reference Willenbockel, V., Lepore, F., Bacon, B. A., & Gosselin, F. (2013). The informational correlates of conscious and nonconscious face-gender perception. Journal of Vision, 13(2), 10, 1–14. Willenbockel, V., Lepore, F., Bacon, B. A., & Gosselin, F. (2013). The informational correlates of conscious and nonconscious face-gender perception. Journal of Vision, 13(2), 10, 1–14.
go back to reference Yang, N., Shafai, F., & Oruc, I. (2014). Size determines whether specialized expert processes are engaged for recognition of faces. Journal of Vision, 14(8), 17, 1–12. Yang, N., Shafai, F., & Oruc, I. (2014). Size determines whether specialized expert processes are engaged for recognition of faces. Journal of Vision, 14(8), 17, 1–12.
go back to reference Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145.CrossRef Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145.CrossRef
go back to reference Yovel, G., & Kanwisher, N. (2004). Face perception: Domain specific, not process specific. Neuron, 44(5), 889–898.PubMed Yovel, G., & Kanwisher, N. (2004). Face perception: Domain specific, not process specific. Neuron, 44(5), 889–898.PubMed
Metagegevens
Titel
The influence of natural contour and face size on the spatial frequency tuning for identifying upright and inverted faces
Auteurs
Jessica Royer
Verena Willenbockel
Caroline Blais
Frédéric Gosselin
Sandra Lafortune
Josiane Leclerc
Daniel Fiset
Publicatiedatum
02-01-2016
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2017
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0740-3

Andere artikelen Uitgave 1/2017

Psychological Research 1/2017 Naar de uitgave