Skip to main content
Top
Gepubliceerd in:

30-07-2016 | Brief Report

Brief Report: Early VEPs to Pattern-Reversal in Adolescents and Adults with Autism

Auteurs: K. Kovarski, A. Thillay, E. Houy-Durand, S. Roux, A. Bidet-Caulet, F. Bonnet-Brilhault, M. Batty

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 10/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Autism spectrum disorder (ASD) is characterized by atypical visual perception both in the social and nonsocial domain. In order to measure a reliable visual response, visual evoked potentials were recorded during a passive pattern-reversal stimulation in adolescents and adults with and without ASD. While the present results show the same age-related changes in both autistic and non-autistic groups, they reveal a smaller P100 amplitude in the ASD group compared to controls. These results confirm that early visual responses are affected in ASD even with a simple, non social and passive stimulation and suggest that they should be considered in order to better understand higher-level processes.
Voetnoten
1
In this article, we have used N75, P100 and N135 to refer to the visual evoked potentials evoked by pattern reversal (Odom et al. 2010).
 
Literatuur
go back to reference Allison, T., Hume, A. L., Wood, C. C., & Goff, W. R. (1984). Developmental and aging changes in somatosensory, auditory and visual evoked potentials. Electroencephalography and Clinical Neurophysiology, 58(1), 14–24.PubMedCrossRef Allison, T., Hume, A. L., Wood, C. C., & Goff, W. R. (1984). Developmental and aging changes in somatosensory, auditory and visual evoked potentials. Electroencephalography and Clinical Neurophysiology, 58(1), 14–24.PubMedCrossRef
go back to reference Allison, T., Wood, C. C., & Goff, W. R. (1983). Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: Latencies in relation to age, sex, and brain and body size. Electroencephalography and Clinical Neurophysiology, 55(6), 619–636.PubMedCrossRef Allison, T., Wood, C. C., & Goff, W. R. (1983). Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: Latencies in relation to age, sex, and brain and body size. Electroencephalography and Clinical Neurophysiology, 55(6), 619–636.PubMedCrossRef
go back to reference American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (DSM-IV-TR). Washington, DC: American Psychiatric Association. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (DSM-IV-TR). Washington, DC: American Psychiatric Association.
go back to reference Belmonte, M. K., & Yurgelun-Todd, D. A. (2003). Functional anatomy of impaired selective attention and compensatory processing in autism. Cognitive Brain Research, 17(3), 651–664.PubMedCrossRef Belmonte, M. K., & Yurgelun-Todd, D. A. (2003). Functional anatomy of impaired selective attention and compensatory processing in autism. Cognitive Brain Research, 17(3), 651–664.PubMedCrossRef
go back to reference Bruneau, N., Roux, S., Adrien, J. L., & Barthelemy, C. (1999). Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N1 wave-T complex). Clinical Neurophysiology, 110(11), 1927–1934.PubMedCrossRef Bruneau, N., Roux, S., Adrien, J. L., & Barthelemy, C. (1999). Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N1 wave-T complex). Clinical Neurophysiology, 110(11), 1927–1934.PubMedCrossRef
go back to reference Celesia, G. G., Kaufman, D., & Cone, S. (1987). Effects of age and sex on pattern electroretinograms and visual evoked potentials. Electroencephalography and Clinical Neurophysiology, 68(3), 161–171.PubMedCrossRef Celesia, G. G., Kaufman, D., & Cone, S. (1987). Effects of age and sex on pattern electroretinograms and visual evoked potentials. Electroencephalography and Clinical Neurophysiology, 68(3), 161–171.PubMedCrossRef
go back to reference Constable, P. A., Gaigg, S. B., Bowler, D. M., & Thompson, D. A. (2012). Motion and pattern cortical potentials in adults with high-functioning autism spectrum disorder. Documenta Ophthalmologica,. doi:10.1007/s10633-012-9349-7.PubMed Constable, P. A., Gaigg, S. B., Bowler, D. M., & Thompson, D. A. (2012). Motion and pattern cortical potentials in adults with high-functioning autism spectrum disorder. Documenta Ophthalmologica,. doi:10.​1007/​s10633-012-9349-7.PubMed
go back to reference Deruelle, C., Rondan, C., Salle-Collemiche, X., Bastard-Rosset, D., & Da Fonseca, D. (2008). Attention to low- and high-spatial frequencies in categorizing facial identities, emotions and gender in children with autism. Brain and Cognition, 66(2), 115–123. doi:10.1016/j.bandc.2007.06.001.PubMedCrossRef Deruelle, C., Rondan, C., Salle-Collemiche, X., Bastard-Rosset, D., & Da Fonseca, D. (2008). Attention to low- and high-spatial frequencies in categorizing facial identities, emotions and gender in children with autism. Brain and Cognition, 66(2), 115–123. doi:10.​1016/​j.​bandc.​2007.​06.​001.PubMedCrossRef
go back to reference Di Russo, F., Spinelli, D., & Morrone, M. C. (2001). Automatic gain control contrast mechanisms are modulated by attention in humans: Evidence from visual evoked potentials. Vision Research, 41(19), 2435–2447.PubMedCrossRef Di Russo, F., Spinelli, D., & Morrone, M. C. (2001). Automatic gain control contrast mechanisms are modulated by attention in humans: Evidence from visual evoked potentials. Vision Research, 41(19), 2435–2447.PubMedCrossRef
go back to reference Ding, Y., Martinez, A., Qu, Z., & Hillyard, S. A. (2014). Earliest stages of visual cortical processing are not modified by attentional load. Human Brain Mapping, 35(7), 3008–3024.PubMedCrossRef Ding, Y., Martinez, A., Qu, Z., & Hillyard, S. A. (2014). Earliest stages of visual cortical processing are not modified by attentional load. Human Brain Mapping, 35(7), 3008–3024.PubMedCrossRef
go back to reference Ecker, C., Marquand, A., Mourao-Miranda, J., Johnston, P., Daly, E. M., Brammer, M. J., et al. (2010). Describing the brain in autism in five dimensions–magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. The Journal of Neuroscience, 30(32), 10612–10623. doi:10.1523/JNEUROSCI.5413-09.2010.PubMedCrossRef Ecker, C., Marquand, A., Mourao-Miranda, J., Johnston, P., Daly, E. M., Brammer, M. J., et al. (2010). Describing the brain in autism in five dimensions–magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. The Journal of Neuroscience, 30(32), 10612–10623. doi:10.​1523/​JNEUROSCI.​5413-09.​2010.PubMedCrossRef
go back to reference Emmerson-Hanover, R., Shearer, D. E., Creel, D. J., & Dustman, R. E. (1994). Pattern reversal evoked potentials: Gender differences and age-related changes in amplitude and latency. Electroencephalography and Clinical Neurophysiology, 92(2), 93–101.PubMedCrossRef Emmerson-Hanover, R., Shearer, D. E., Creel, D. J., & Dustman, R. E. (1994). Pattern reversal evoked potentials: Gender differences and age-related changes in amplitude and latency. Electroencephalography and Clinical Neurophysiology, 92(2), 93–101.PubMedCrossRef
go back to reference Frith, U. (1989). Autism: Explaining the enigma (Cognitive development). Oxford; Cambridge, MA: Basil Blackwell. Frith, U. (1989). Autism: Explaining the enigma (Cognitive development). Oxford; Cambridge, MA: Basil Blackwell.
go back to reference Frith, U., & Happe, F. (1994). Autism: beyond “theory of mind”. Cognition, 50(1–3), 115–132.PubMedCrossRef Frith, U., & Happe, F. (1994). Autism: beyond “theory of mind”. Cognition, 50(1–3), 115–132.PubMedCrossRef
go back to reference Gonzalez, C. M. G., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7(1), 41–51.CrossRef Gonzalez, C. M. G., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7(1), 41–51.CrossRef
go back to reference Heinze, H. J., Luck, S. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalography and Clinical Neurophysiology, 75(6), 511–527.PubMedCrossRef Heinze, H. J., Luck, S. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalography and Clinical Neurophysiology, 75(6), 511–527.PubMedCrossRef
go back to reference Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95(3), 781–787.CrossRef Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95(3), 781–787.CrossRef
go back to reference Hyde, K. L., Samson, F., Evans, A. C., & Mottron, L. (2010). Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Human Brain Mapping, 31(4), 556–566. doi:10.1002/hbm.20887.PubMed Hyde, K. L., Samson, F., Evans, A. C., & Mottron, L. (2010). Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Human Brain Mapping, 31(4), 556–566. doi:10.​1002/​hbm.​20887.PubMed
go back to reference Ikeda, J., Davitt, B. V., Ultmann, M., Maxim, R., & Cruz, O. A. (2013). Brief report: Incidence of ophthalmologic disorders in children with autism. Journal of Autism and Developmental Disorders, 43(6), 1447–1451. doi:10.1007/s10803-012-1475-2.PubMedCrossRef Ikeda, J., Davitt, B. V., Ultmann, M., Maxim, R., & Cruz, O. A. (2013). Brief report: Incidence of ophthalmologic disorders in children with autism. Journal of Autism and Developmental Disorders, 43(6), 1447–1451. doi:10.​1007/​s10803-012-1475-2.PubMedCrossRef
go back to reference Jeffreys, D. A., & Axford, J. G. (1972). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Experimental Brain Research, 16(1), 1–21.PubMed Jeffreys, D. A., & Axford, J. G. (1972). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Experimental Brain Research, 16(1), 1–21.PubMed
go back to reference Jemel, B., Mimeault, D., Saint-Amour, D., Hosein, A., & Mottron, L. (2010). VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism. Journal of Vision, 10(6), 13. doi:10.1167/10.6.13.PubMedCrossRef Jemel, B., Mimeault, D., Saint-Amour, D., Hosein, A., & Mottron, L. (2010). VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism. Journal of Vision, 10(6), 13. doi:10.​1167/​10.​6.​13.PubMedCrossRef
go back to reference Kroger, A., Bletsch, A., Krick, C., Siniatchkin, M., Jarczok, T. A., Freitag, C. M., et al. (2014). Visual event-related potentials to biological motion stimuli in autism spectrum disorders. Social Cognitive and Affective Neuroscience, 9(8), 1214–1222. doi:10.1093/scan/nst103.PubMedCrossRef Kroger, A., Bletsch, A., Krick, C., Siniatchkin, M., Jarczok, T. A., Freitag, C. M., et al. (2014). Visual event-related potentials to biological motion stimuli in autism spectrum disorders. Social Cognitive and Affective Neuroscience, 9(8), 1214–1222. doi:10.​1093/​scan/​nst103.PubMedCrossRef
go back to reference Lord, C., Risi, S., Lambrecht, L., Cook, E. H, Jr., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.PubMedCrossRef Lord, C., Risi, S., Lambrecht, L., Cook, E. H, Jr., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.PubMedCrossRef
go back to reference Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.PubMedCrossRef Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.PubMedCrossRef
go back to reference Luck, S. J., & Hillyard, S. A. (1995). The role of attention in feature detection and conjunction discrimination: An electrophysiological analysis. International Journal of Neuroscience, 80(1–4), 281–297.PubMedCrossRef Luck, S. J., & Hillyard, S. A. (1995). The role of attention in feature detection and conjunction discrimination: An electrophysiological analysis. International Journal of Neuroscience, 80(1–4), 281–297.PubMedCrossRef
go back to reference Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4–18.PubMedCrossRef Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4–18.PubMedCrossRef
go back to reference Mangun, G. R., & Hillyard, S. A. (1990). Allocation of visual attention to spatial locations: Tradeoff functions for event-related brain potentials and detection performance. Perception and Psychophysics, 47(6), 532–550.PubMedCrossRef Mangun, G. R., & Hillyard, S. A. (1990). Allocation of visual attention to spatial locations: Tradeoff functions for event-related brain potentials and detection performance. Perception and Psychophysics, 47(6), 532–550.PubMedCrossRef
go back to reference Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2(4), 364–369. doi:10.1038/7274.PubMedCrossRef Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2(4), 364–369. doi:10.​1038/​7274.PubMedCrossRef
go back to reference Martinez, A., Di Russo, F., Anllo-Vento, L., & Hillyard, S. A. (2001a). Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies. Clinical Neurophysiology, 112(11), 1980–1998.PubMedCrossRef Martinez, A., Di Russo, F., Anllo-Vento, L., & Hillyard, S. A. (2001a). Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies. Clinical Neurophysiology, 112(11), 1980–1998.PubMedCrossRef
go back to reference Martinez, A., Di Russo, F., Anllo-Vento, L., Sereno, M. I., Buxton, R. B., & Hillyard, S. A. (2001b). Putting spatial attention on the map: Timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Research, 41(10–11), 1437–1457.PubMedCrossRef Martinez, A., Di Russo, F., Anllo-Vento, L., Sereno, M. I., Buxton, R. B., & Hillyard, S. A. (2001b). Putting spatial attention on the map: Timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Research, 41(10–11), 1437–1457.PubMedCrossRef
go back to reference Milne, E., Griffiths, H., Buckley, D., & Scope, A. (2009a). Vision in children and adolescents with autistic spectrum disorder: Evidence for reduced convergence. Journal of Autism and Developmental Disorders, 39(7), 965–975. doi:10.1007/s10803-009-0705-8.PubMedCrossRef Milne, E., Griffiths, H., Buckley, D., & Scope, A. (2009a). Vision in children and adolescents with autistic spectrum disorder: Evidence for reduced convergence. Journal of Autism and Developmental Disorders, 39(7), 965–975. doi:10.​1007/​s10803-009-0705-8.PubMedCrossRef
go back to reference Moseley, R. L., Ypma, R. J., Holt, R. J., Floris, D., Chura, L. R., Spencer, M. D., et al. (2015). Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. NeuroImage: Clinical, 9, 140–152. doi:10.1016/j.nicl.2015.07.015.CrossRef Moseley, R. L., Ypma, R. J., Holt, R. J., Floris, D., Chura, L. R., Spencer, M. D., et al. (2015). Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. NeuroImage: Clinical, 9, 140–152. doi:10.​1016/​j.​nicl.​2015.​07.​015.CrossRef
go back to reference Moskowitz, A., & Sokol, S. (1983). Developmental changes in the human visual system as reflected by the latency of the pattern reversal VEP. Electroencephalography and Clinical Neurophysiology, 56(1), 1–15.PubMedCrossRef Moskowitz, A., & Sokol, S. (1983). Developmental changes in the human visual system as reflected by the latency of the pattern reversal VEP. Electroencephalography and Clinical Neurophysiology, 56(1), 1–15.PubMedCrossRef
go back to reference Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43. doi:10.1007/s10803-005-0040-7.PubMedCrossRef Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43. doi:10.​1007/​s10803-005-0040-7.PubMedCrossRef
go back to reference Mottron, L., Mineau, S., Martel, G., Bernier, C. S., Berthiaume, C., Dawson, M., et al. (2007). Lateral glances toward moving stimuli among young children with autism: Early regulation of locally oriented perception? Development and Psychopathology, 19(1), 23–36. doi:10.1017/S0954579407070022.PubMedCrossRef Mottron, L., Mineau, S., Martel, G., Bernier, C. S., Berthiaume, C., Dawson, M., et al. (2007). Lateral glances toward moving stimuli among young children with autism: Early regulation of locally oriented perception? Development and Psychopathology, 19(1), 23–36. doi:10.​1017/​S095457940707002​2.PubMedCrossRef
go back to reference Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Tormene, A. P., et al. (2010). ISCEV standard for clinical visual evoked potentials (2009 update). Documenta Ophthalmologica, 120(1), 111–119. doi:10.1007/s10633-009-9195-4.PubMedCrossRef Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Tormene, A. P., et al. (2010). ISCEV standard for clinical visual evoked potentials (2009 update). Documenta Ophthalmologica, 120(1), 111–119. doi:10.​1007/​s10633-009-9195-4.PubMedCrossRef
go back to reference Pei, F., Baldassi, S., & Norcia, A. M. (2014). Electrophysiological measures of low-level vision reveal spatial processing deficits and hemispheric asymmetry in autism spectrum disorder. Journal of Vision,. doi:10.1167/14.11.3.PubMed Pei, F., Baldassi, S., & Norcia, A. M. (2014). Electrophysiological measures of low-level vision reveal spatial processing deficits and hemispheric asymmetry in autism spectrum disorder. Journal of Vision,. doi:10.​1167/​14.​11.​3.PubMed
go back to reference Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.PubMedCrossRef Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.PubMedCrossRef
go back to reference Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30(5), 1723–1733. doi:10.1002/hbm.20636.PubMedCrossRef Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30(5), 1723–1733. doi:10.​1002/​hbm.​20636.PubMedCrossRef
go back to reference Sutherland, A., & Crewther, D. P. (2010). Magnocellular visual evoked potential delay with high autism spectrum quotient yields a neural mechanism for altered perception. Brain, 133(Pt 7), 2089–2097. doi:10.1093/brain/awq122.PubMedCrossRef Sutherland, A., & Crewther, D. P. (2010). Magnocellular visual evoked potential delay with high autism spectrum quotient yields a neural mechanism for altered perception. Brain, 133(Pt 7), 2089–2097. doi:10.​1093/​brain/​awq122.PubMedCrossRef
go back to reference Tanaka, S., Maezawa, Y., & Kirino, E. (2013). Classification of schizophrenia patients and healthy controls using p100 event-related potentials for visual processing. Neuropsychobiology, 68(2), 71–78. doi:10.1159/000350962.PubMedCrossRef Tanaka, S., Maezawa, Y., & Kirino, E. (2013). Classification of schizophrenia patients and healthy controls using p100 event-related potentials for visual processing. Neuropsychobiology, 68(2), 71–78. doi:10.​1159/​000350962.PubMedCrossRef
go back to reference Taylor, M. J. (2002). Non-spatial attentional effects on P1. Clinical Neurophysiology, 113(12), 1903–1908.PubMedCrossRef Taylor, M. J. (2002). Non-spatial attentional effects on P1. Clinical Neurophysiology, 113(12), 1903–1908.PubMedCrossRef
go back to reference Tobimatsu, S., Kurita-Tashima, S., Nakayama-Hiromatsu, M., Akazawa, K., & Kato, M. (1993). Age-related changes in pattern visual evoked potentials: Differential effects of luminance, contrast and check size. Electroencephalography and Clinical Neurophysiology, 88(1), 12–19.PubMedCrossRef Tobimatsu, S., Kurita-Tashima, S., Nakayama-Hiromatsu, M., Akazawa, K., & Kato, M. (1993). Age-related changes in pattern visual evoked potentials: Differential effects of luminance, contrast and check size. Electroencephalography and Clinical Neurophysiology, 88(1), 12–19.PubMedCrossRef
go back to reference Vandenbroucke, M. W., Scholte, H. S., van Engeland, H., Lamme, V. A., & Kemner, C. (2008). A neural substrate for atypical low-level visual processing in autism spectrum disorder. Brain, 131(Pt 4), 1013–1024. doi:10.1093/brain/awm321.PubMedCrossRef Vandenbroucke, M. W., Scholte, H. S., van Engeland, H., Lamme, V. A., & Kemner, C. (2008). A neural substrate for atypical low-level visual processing in autism spectrum disorder. Brain, 131(Pt 4), 1013–1024. doi:10.​1093/​brain/​awm321.PubMedCrossRef
go back to reference Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190–203.PubMedCrossRef Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190–203.PubMedCrossRef
go back to reference Wechsler, D. (1997). Wechsler Adult Intelligence Scale (Third edition, WAIS-III). San Antonio, TX: The Psychological Corporation. Wechsler, D. (1997). Wechsler Adult Intelligence Scale (Third edition, WAIS-III). San Antonio, TX: The Psychological Corporation.
go back to reference Wechsler, D. (2005). Wechsler Intelligence Scale for Children (Fourth Edition, WISC-IV). San Antonio, TX: The Psychological Corporation. Wechsler, D. (2005). Wechsler Intelligence Scale for Children (Fourth Edition, WISC-IV). San Antonio, TX: The Psychological Corporation.
go back to reference Wigham, S., Rodgers, J., South, M., McConachie, H., & Freeston, M. (2015). The interplay between sensory processing abnormalities, intolerance of uncertainty, anxiety and restricted and repetitive behaviours in autism spectrum disorder. Journal of Autism and Developmental Disorders, 45(4), 943–952. doi:10.1007/s10803-014-2248-x.PubMedCrossRef Wigham, S., Rodgers, J., South, M., McConachie, H., & Freeston, M. (2015). The interplay between sensory processing abnormalities, intolerance of uncertainty, anxiety and restricted and repetitive behaviours in autism spectrum disorder. Journal of Autism and Developmental Disorders, 45(4), 943–952. doi:10.​1007/​s10803-014-2248-x.PubMedCrossRef
go back to reference Wijers, A. A., Lange, J. J., Mulder, G., & Mulder, L. J. (1997). An ERP study of visual spatial attention and letter target detection for isoluminant and nonisoluminant stimuli. Psychophysiology, 34(5), 553–565.PubMedCrossRef Wijers, A. A., Lange, J. J., Mulder, G., & Mulder, L. J. (1997). An ERP study of visual spatial attention and letter target detection for isoluminant and nonisoluminant stimuli. Psychophysiology, 34(5), 553–565.PubMedCrossRef
Metagegevens
Titel
Brief Report: Early VEPs to Pattern-Reversal in Adolescents and Adults with Autism
Auteurs
K. Kovarski
A. Thillay
E. Houy-Durand
S. Roux
A. Bidet-Caulet
F. Bonnet-Brilhault
M. Batty
Publicatiedatum
30-07-2016
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 10/2016
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-016-2880-8

Andere artikelen Uitgave 10/2016

Journal of Autism and Developmental Disorders 10/2016 Naar de uitgave