Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 22, 2010

Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD)

  • Joshua Baruth EMAIL logo , Manuel Casanova , Lonnie Sears and Estate Sokhadze

Abstract

It has been reported that individuals with autism spectrum disorder (ASD) have abnormal responses to the sensory environment. For these individuals sensory overload can impair functioning, raise physiological stress, and adversely affect social interaction. Early-stage (i.e. within 200 ms of stimulus onset) auditory processing abnormalities have been widely examined in ASD using event-related potentials (ERP), while ERP studies investigating early-stage visual processing in ASD are less frequent. We wanted to test the hypothesis of early-stage visual processing abnormalities in ASD by investigating ERPs elicited in a visual oddball task using illusory figures. Our results indicate that individuals with ASD have abnormally large cortical responses to task irrelevant stimuli over both parieto-occipital and frontal regions-of-interest (ROI) during early stages of visual processing compared to the control group. Furthermore, ASD patients showed signs of an overall disruption in stimulus discrimination, and had a significantly higher rate of motor response errors.

[1] American Psychiatric Association diagnostic and statistical manual of mental disorders (DSM-IV TR), 4th ed., American Psychiatric Association, Washington, D.C., 2000 Search in Google Scholar

[2] Charman, T., Autism spectrum disorders, Psychiatry, 2008, 7, 331–334. 10.1016/j.mppsy.2008.05.015Search in Google Scholar

[3] Gomes, E., Pedroso, F.S., Wagner, M.B., Auditory hypersensitivity in the autistic spectrum disorder, Pro Fono 2008, 20, 279–284. 10.1590/S0104-56872008000400013Search in Google Scholar

[4] Khalfa, S., Bruneau, N., Rogé, B., Georgieff, N., Veuillet, E., Adrien, J.L., et al., Increased perception of loudness in autism, Hear. Res., 2004, 198, 87–92. http://dx.doi.org/10.1016/j.heares.2004.07.00610.1016/j.heares.2004.07.006Search in Google Scholar

[5] Ratey, J.J., Johnson, C., The shadow syndromes, Bantam Books, New York,1997 Search in Google Scholar

[6] Jeste, S.S., Nelson, C.A. 3rd., Event related potentials in the understanding of autism spectrum disorders: an analytical review, J Autism Dev Disord, 2009, 39, 495–510. http://dx.doi.org/10.1007/s10803-008-0652-910.1007/s10803-008-0652-9Search in Google Scholar

[7] Luck, S.J., Heinze, H.J., Mangun, G.R., Hillyard, S.A., Visual eventrelated potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components, Electroencephalogr Clin Neurophysiol, 1990, 75, 528–542. http://dx.doi.org/10.1016/0013-4694(90)90139-B10.1016/0013-4694(90)90139-BSearch in Google Scholar

[8] O’Donnel, B.F., Swearer, J.M., Smith, L.T., Hokama, H., Mccarley, R.W., A topographic study of ERPs elicited by visual feature discrimination, Brain Topogr, 997, 10, 133–143. 10.1023/A:1022203811678Search in Google Scholar

[9] Coles, M.G.H., Rugg, M.D., Event-related brain potentials: an introduction, In: Rugg, M.D., Coles, M.G.H. (Eds.), Electrophysiology of mind. Event-related brain potentials and cognition, Oxford University Press, Oxford, 1995 10.1093/acprof:oso/9780198524168.003.0001Search in Google Scholar

[10] Herrmann, C.S., Knight, R.T., Mechanisms of human attention: event related potentials and oscillations, Neurosci Biobehav Rev, 2001, 25, 465–476. http://dx.doi.org/10.1016/S0149-7634(01)00027-610.1016/S0149-7634(01)00027-6Search in Google Scholar

[11] Pritchard, W. S., Psychophysiology of P300, Psychol Bull, 1981, 89, 506–540. http://dx.doi.org/10.1037/0033-2909.89.3.50610.1037/0033-2909.89.3.506Search in Google Scholar

[12] Picton, T.W., The P300 wave of the human event-related potential, J Clin Neurophysiol, 1992, 9, 456–479. http://dx.doi.org/10.1097/00004691-199210000-0000210.1097/00004691-199210000-00002Search in Google Scholar PubMed

[13] Polich, J., Theoretical overview of P3a and P3b, In: Polich, J. (Ed.),Detection of Change: Event-related Potential and fMRI Findings, Kluwer Academic Press, Boston, 2003 Search in Google Scholar

[14] Bomba, M.D., Pang, E.W., Cortical auditory evoked potentials in autism: a review, Int J Psychophysiol, 2004, 53, 161–169. http://dx.doi.org/10.1016/j.ijpsycho.2004.04.00110.1016/j.ijpsycho.2004.04.001Search in Google Scholar

[15] Klin, A., Auditory brainstem responses in autism. Brainstem dysfunction of peripheral hearing loss?, J Autism Dev Disord, 1993, 23,15–34. http://dx.doi.org/10.1007/BF0106641610.1007/BF01066416Search in Google Scholar

[16] Rosenhall, U., Nordin, V., Brantberg, K., Gillberg, C., Autism and auditory brain stem responses, Ear Hear, 2003, 24, 206–214. http://dx.doi.org/10.1097/01.AUD.0000069326.11466.7E10.1097/01.AUD.0000069326.11466.7ESearch in Google Scholar

[17] Bruneau, N., Garreau, B., Roux, S., Lelord, G., Modulation of auditory evoked potentials with increasing stimulus intensity in autistic children, Electroencephalogr Clin Neurophysiol Suppl, 1987, 40, 584–589. Search in Google Scholar

[18] Lincoln, A.J., Courchesne, E., Harms, L., Allen, M., Sensory modulation of auditory stimuli in children with autism and receptive developmental language disorder: event-related brain potential evidence, J Autism Dev Disord, 1995, 25, 521–539. http://dx.doi.org/10.1007/BF0217829810.1007/BF02178298Search in Google Scholar

[19] Bruneau, N., Roux, S., Adrien, J., Barthelemy, C., Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N1 wave-T complex), Clin Neurophysiol, 1999, 110, 1927–1934. http://dx.doi.org/10.1016/S1388-2457(99)00149-210.1016/S1388-2457(99)00149-2Search in Google Scholar

[20] Oades, R. D., Walker, M. K., Geffen, L. B., Stern, L. M., Event-related potentials in autistic and healthy children on an auditory choice reaction time task, Int J Psychophysiol, 1988, 6, 25–37. http://dx.doi.org/10.1016/0167-8760(88)90032-310.1016/0167-8760(88)90032-3Search in Google Scholar

[21] Ferri, R., Elia, M., Agarwal, N., Lanuzza, B., Musumeci, S. A., Pennisi, G., The mismatch negativity and the P3a components of the auditory event-related potentials in autistic lowfunctioning subjects, Clin Neurophysiol, 2003, 114, 1671–1680. http://dx.doi.org/10.1016/S1388-2457(03)00153-610.1016/S1388-2457(03)00153-6Search in Google Scholar

[22] Seri, S., Cerquiglini, A., Pisani, F., Curatolo, P., Autism in tuberous sclerosis: Evoked potential evidence for a deficit in auditory sensory processing, Neurophysiol, 1999, 110, 1825–1830. http://dx.doi.org/10.1016/S1388-2457(99)00137-610.1016/S1388-2457(99)00137-6Search in Google Scholar

[23] Jansson-Verkasalo, E., Ceponiene, R., Valkama, M., Vainionpää, L., Laitakari, K., Alku, P., Suominen, K., Näätänen, R., Deficient speechsound processing, as shown by the electrophysiologic brain mismatch negativity response, and naming ability in prematurely born children, Neurosci. Lett., 2003, 348, 5–8. http://dx.doi.org/10.1016/S0304-3940(03)00641-410.1016/S0304-3940(03)00641-4Search in Google Scholar

[24] Lepistö, T., Kujala, T., Vanhala, R., Alku, P., Huotilainen, M., Näätänen, R., The discrimination of and orienting to speech and non-speech sounds in children with autism, Brain Res., 2005, 1066, 147–157. http://dx.doi.org/10.1016/j.brainres.2005.10.05210.1016/j.brainres.2005.10.052Search in Google Scholar PubMed

[25] Doninger, G.M., Foxe, J.J., Murray, M.M., Higgins, B.A., Snodgrass, J.G., Schroeder, C.E., et al., Activation timecourse of ventral visual stream object-recognition areas: High density electrical mapping of perceptual closure processes, J Cogn Neurosci, 2000, 12, 615–621. http://dx.doi.org/10.1162/08989290056237210.1162/089892900562372Search in Google Scholar

[26] Foxe, J.J., Doninger, G.M., Javitt, D.C., Early visual processing deficits in schizophrenia: Impaired P1 generation revealed by high density electrical mapping, Neuroreport, 2001, 12, 3815–3820. http://dx.doi.org/10.1097/00001756-200112040-0004310.1097/00001756-200112040-00043Search in Google Scholar

[27] Spencer, K.M., Dien, J., Donchin, E., Spatiotemporal analysis of the late ERP responses to deviant stimuli, Psychophysiology, 2001, 38, 343–358. http://dx.doi.org/10.1017/S004857720100032410.1111/1469-8986.3820343Search in Google Scholar

[28] Butler, P.D., Javitt, D.C., Early-stage visual processing deficits in schizophrenia, Curr Opin Psychiatry, 2005, 18, 151–157. http://dx.doi.org/10.1097/00001504-200503000-0000810.1097/00001504-200503000-00008Search in Google Scholar

[29] Tendolkar, I., Ruhrmann, S., Brockhaus-Dumke, A., Pauli, M., Mueller, R., Pukrop, R., et al., Neural correlates of visuo-spatial attention during an antisaccade task in schizophrenia: an ERP study, Int. J. Neurosci., 2005, 115, 681–698. http://dx.doi.org/10.1080/0020745059088747510.1080/00207450590887475Search in Google Scholar

[30] Vohs, J.L., Hetrick, W.P., Kieffaber, P.D., Bodkins, M., Bismark, A., Shekhar, A., et al., Visual event-related potentials in schizotypal personality disorder and schizophrenia, J Abnorm Psychol, 2008, 117, 119–131. http://dx.doi.org/10.1037/0021-843X.117.1.11910.1037/0021-843X.117.1.119Search in Google Scholar

[31] Courchesne, E., Courchesne, R. Y., Hicks, G., Lincoln, A. J., Functioning of the brain-stem auditory pathway in nonretarded autistic individuals, Electroencephalogr Clin Neurophysiol, 1985a, 61, 491–501. http://dx.doi.org/10.1016/0013-4694(85)90967-810.1016/0013-4694(85)90967-8Search in Google Scholar

[32] Courchesne, E., Lincoln, A. J., Kilman, B. A., Galambos, R., Eventrelated brain potential correlates of the processing of novel visual and auditory information in autism, J Autism Dev Disord, 1985b, 15, 55–76. http://dx.doi.org/10.1007/BF0183789910.1007/BF01837899Search in Google Scholar PubMed

[33] Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., Grillon, C., Pathophysiologic findings in nonretarded autism and receptive developmental language disorder, J Autism Dev Disord, 1989, 19, 1–17. http://dx.doi.org/10.1007/BF0221271410.1007/BF02212714Search in Google Scholar PubMed

[34] Verbaten, M. N., Roelofs, J. W., van Engeland, H., Kenemans, J. K., Slangen, J. L., Abnormal visual event-related potentials of autistic children, J Autism Dev Disord, 1991, 21, 449–470. http://dx.doi.org/10.1007/BF0220687010.1007/BF02206870Search in Google Scholar PubMed

[35] Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., Van Engeland, H., Visual and somatosensory event-related brain potentials in autistic children and three different control groups, Electroencephalogr Clin Neurophysiol, 1994, 92, 225–237 http://dx.doi.org/10.1016/0168-5597(94)90066-310.1016/0168-5597(94)90066-3Search in Google Scholar

[36] Kemner, C., van der Gaag, R. J., Verbaten, M., van Engeland, H., ERP differences among subtypes of pervasive developmental disorders, Biol. Psychiatry, 1999, 46, 781–789. http://dx.doi.org/10.1016/S0006-3223(99)00003-710.1016/S0006-3223(99)00003-7Search in Google Scholar

[37] Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T., Pierce, K., et al., Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks, Brain Res Cogn Brain Res, 2001, 11, 127–145. http://dx.doi.org/10.1016/S0926-6410(00)00072-010.1016/S0926-6410(00)00072-0Search in Google Scholar

[38] Hoeksma, M. R., Kemner, C., Kenemans, J. L., van Engeland, H., Abnormal selective attention normalizes P3 amplitudes in PDD, J Autism Dev Disord, 2006, 36, 643–654. http://dx.doi.org/10.1007/s10803-006-0102-510.1007/s10803-006-0102-5Search in Google Scholar

[39] Sokhadze, E., El-Baz, A., Baruth, J., Mathai, G., Sears, L., Casanova, M., Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism, J Autism Dev Disord, 2009b, 39, 619–634. http://dx.doi.org/10.1007/s10803-008-0662-710.1007/s10803-008-0662-7Search in Google Scholar

[40] Sokhadze, E., Baruth, J., Tasman, A., Sears, L., Mathai, G., El-Baz, A., et al., Event-related potential study of novelty processing abnormalities in autism, Appl Psychophysiol Biofeedback, 2009a, 34, 37–51. http://dx.doi.org/10.1007/s10484-009-9074-510.1007/s10484-009-9074-5Search in Google Scholar

[41] Haxby, J.V., Hoffman, E.A., Gobbini, M.I., Human neural systems for face recognition and social communication, Biol. Psychiatry, 2002, 51, 59–67. http://dx.doi.org/10.1016/S0006-3223(01)01330-010.1016/S0006-3223(01)01330-0Search in Google Scholar

[42] Posner, M.I., Petersen, S.E., The attention system of the human brain, Annu. Rev. Neurosci., 1990, 13, 25–42. http://dx.doi.org/10.1146/annurev.ne.13.030190.00032510.1146/annurev.ne.13.030190.000325Search in Google Scholar PubMed

[43] Clark, V.P., Fan, S., Hillyard, S.A., Identification of early visual evoked potential generators by retinotopic and topographic analyses, Hum Brain Mapp, 1995, 2, 170–187. http://dx.doi.org/10.1002/hbm.46002030610.1002/hbm.460020306Search in Google Scholar

[44] Mangun, G. R., Neural mechanisms of visual selective attention, Psychophysiology, 1995, 32, 4–18. http://dx.doi.org/10.1111/j.1469-8986.1995.tb03400.x10.1111/j.1469-8986.1995.tb03400.xSearch in Google Scholar PubMed

[45] Seeck, M., Michel, C.M., Mainwaring, N., Cosgrove, R., Blume, H., Ives, J., et al., Evidence for rapid face recognition from human scalp and intracranial electrodes, Neuroreport, 1997, 8, 2749–2754. http://dx.doi.org/10.1097/00001756-199708180-0002110.1097/00001756-199708180-00021Search in Google Scholar

[46] Herrmann, M.J., Ehlis, A.C., Ellgring, H., Fallgatter, A.J., Early stages (P100) of face perception in humans as measured with event-related potentials (ERPs), J. Neural Transm., 2005, 112, 1073–1081. http://dx.doi.org/10.1007/s00702-004-0250-810.1007/s00702-004-0250-8Search in Google Scholar

[47] Heinze, H.J., Mangun, G., Burchert, W., Hinrichs, H., Scholz, M., Münte, T.F., et al., Combined spatial and temporal imaging of brain activity during visual selective attention in humans, Nature, 1994, 372, 543–546. http://dx.doi.org/10.1038/372543a010.1038/372543a0Search in Google Scholar

[48] Hillyard, S.A., Mangun, G.R., Woldorff, M.G., Luck, S.J., Neural mechanisms mediating selective attention, In M. S. Gazzaniga (Ed.), The cognitive neurosciences. MIT Press, Cambridge, MA, 1995 Search in Google Scholar

[49] Hopf, J.M., Vogel, E., Woodman, G., Heinze, H.J., Luck, S.J., Localizing visual discrimination processes in time and space, J. Neurophysiol., 2002, 88, 2088–2095. 10.1152/jn.2002.88.4.2088Search in Google Scholar

[50] Vogel, E.K., Luck, S.J., The visual N1 component as an index of a discrimination process, Psychophysiology, 2000, 37, 190–203. http://dx.doi.org/10.1017/S004857720098126510.1111/1469-8986.3720190Search in Google Scholar

[51] Gomez-Gonzales, C. M., Clark, V. P., Fan, S., Luck, S., Hillyard, S. A., Sources of attention-sensitive visual event-related potentials, Brain Topogr, 1994, 7, 41–51. http://dx.doi.org/10.1007/BF0118483610.1007/BF01184836Search in Google Scholar

[52] Yamazaki, T., Kamijo, K., Kenmochi, A., Fukuzumi, S., Kiyuna, T., Kuroiwa, Y., Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response, Brain Topogr, 2000, 12, 159–175. http://dx.doi.org/10.1023/A:102346780626810.1023/A:1023467806268Search in Google Scholar

[53] Hillyard, S.A., Hink, R.F., Schwent, V.L., Picton, T.W., Electrical signs of selective attention in the human brain, Science, 1973, 182, 177–180. http://dx.doi.org/10.1126/science.182.4108.17710.1126/science.182.4108.177Search in Google Scholar

[54] Kenemans, J. L., Kok, A., Smulders, F. T., Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements, Electroencephalogr Clin Neurophysiol, 1993, 88, 51–63. http://dx.doi.org/10.1016/0168-5597(93)90028-N10.1016/0168-5597(93)90028-NSearch in Google Scholar

[55] Potts, G. F., Liotti, M., Tucker, D. M., Posner, M. I., Frontal and inferior temporal cortical activity in visual target detection: Evidence from high spatially sampled event-related potentials, Brain Topogr, 1996, 9, 3–14. http://dx.doi.org/10.1007/BF0119163710.1007/BF01191637Search in Google Scholar

[56] Potts, G. F., Dien, J., Harty-Speiser, A., McDougl, L. M., Tucker, D. M., Dense sensor array topography of the event related potential to taskrelevant auditory stimuli, Electroencephalogr Clin Neurophysiol, 1998, 106, 444–456. http://dx.doi.org/10.1016/S0013-4694(97)00160-010.1016/S0013-4694(97)00160-0Search in Google Scholar

[57] Le Couteur, A., Lord, C., Rutter, M., The autism diagnostic interview—Revised (ADI-R), Western Psychological Services, Los Angeles, CA, 2003 Search in Google Scholar

[58] Wechsler, D., Wechsler intelligence scale for children (4th ed.), Harcourt Assessment, Inc., San Antonio, TX, 2003 10.1037/t15174-000Search in Google Scholar

[59] Wechsler, D., Wechsler abbreviated scale for intelligence, Harcourt Assessment, Inc., San Antonio, TX, 2004 Search in Google Scholar

[60] First, M. B., Spitzer, R. L., Gibbon, M., Williams, J. B. W., Structured clinical interview for DSM-IV-TR axis I disorders—non-patient edition (SCID-NP), New York State Psychiatric Institute, New York, 2001 Search in Google Scholar

[61] Ferree, T. C., Luu, P., Russell, G. S., Tucker, D. M., Scalp electrode impedance, infection risk, and EEG data quality, Neurophysiol, 2001, 112, 444–536. 10.1016/S1388-2457(00)00533-2Search in Google Scholar

[62] Perrin, E., Pernier, J., Bertrand, O., Giard, M., Echallier, J. F., Mapping of scalp potentials by surface spline interpolation, Electroencephalogr Clin Neurophysiol, 1987, 66, 75–81. http://dx.doi.org/10.1016/0013-4694(87)90141-610.1016/0013-4694(87)90141-6Search in Google Scholar

[63] Fletcher, E. M., Kussmaul, C. L., Mangun, G. R., Estimation of interpolation errors in scalp topographic mapping, Electroencephalogr Clin Neurophysiol, 1996, 98, 422–434. http://dx.doi.org/10.1016/0013-4694(96)95135-410.1016/0013-4694(96)95135-4Search in Google Scholar

[64] Srinivasan, R., Tucker, D. M., Murias, M., Estimating the spatial Nyquist of the human EEG, Behav Res Methods Instrum Comput, 1998, 30, 8–19. 10.3758/BF03209412Search in Google Scholar

[65] Luu, P., Tucker, D. M. L., Englander, R., Lockfeld, A., Lutsep, H., Oken, B., Localizing acute stroke-related EEC changes: Assessing the effects of spatial undersampling, J Clin Neurophysiol, 2001, 18, 302–317. http://dx.doi.org/10.1097/00004691-200107000-0000210.1097/00004691-200107000-00002Search in Google Scholar PubMed

[66] American Encephalographic Society, Guidelines for standard electrode position nomenclature, J Clin Neurophysiol, 1991, 8, 200–202. http://dx.doi.org/10.1097/00004691-199104000-0000710.1097/00004691-199104000-00007Search in Google Scholar

[67] Kimura, M., Katayama, J., Ohira, H., Schröger, E., Visual mismatch negativity: new evidence from the equiprobable paradigm, Psychophysiology, 2009, 46, 402–409. http://dx.doi.org/10.1111/j.1469-8986.2008.00767.x10.1111/j.1469-8986.2008.00767.xSearch in Google Scholar PubMed

[68] Casanova, M. F., Buxhoeveden, D. P., Brown, C., Clinical and macroscopic correlates of minicolumnar pathology in autism, J. Child Neurol., 2002a, 17, 692–695. http://dx.doi.org/10.1177/08830738020170090810.1177/088307380201700908Search in Google Scholar PubMed

[69] Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., Roy, E., Minicolumnar pathology in autism, Neurology, 2002b, 58, 428–432. 10.1212/WNL.58.3.428Search in Google Scholar

[70] Levitt, P., Disruption of interneuron development, Epilepsia, 2005, 46, 22–28. http://dx.doi.org/10.1111/j.1528-1167.2005.00305.x10.1111/j.1528-1167.2005.00305.xSearch in Google Scholar PubMed

[71] Casanova, M. F., Neuropathological and genetic findings in autism: The significance of a putative minicolumnopathy, Neuroscientist, 2006, 12, 435–441. http://dx.doi.org/10.1177/107385840629037510.1177/1073858406290375Search in Google Scholar PubMed

[72] Rubenstein, J.L.R., Merzenich, M.M., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain Behav., 2003, 2, 255–267. http://dx.doi.org/10.1034/j.1601-183X.2003.00037.x10.1034/j.1601-183X.2003.00037.xSearch in Google Scholar

[73] Mountcastle, V.B., Introduction. Computation in cortical columns, Cereb. Cortex, 2003, 13, 2–4. http://dx.doi.org/10.1093/cercor/13.1.210.1093/cercor/13.1.2Search in Google Scholar PubMed

[74] Casanova, M.F., The neuropathology of autism, Brain Pathol., 2007, 17, 422–433. http://dx.doi.org/10.1111/j.1750-3639.2007.00100.x10.1111/j.1750-3639.2007.00100.xSearch in Google Scholar PubMed PubMed Central

[75] Lawrence, Y.A., Kemper, T.L., Baumen, M.L., Blatt, G.J., Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism, Acta Neurol Scand., 2010, 121, 99–108. http://dx.doi.org/10.1111/j.1600-0404.2009.01234.x10.1111/j.1600-0404.2009.01234.xSearch in Google Scholar PubMed

[76] Yip, J., Soghomonian, J.J., Blatt, G.J., Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction, J Neurosci Res., 2008, 86, 525–530. http://dx.doi.org/10.1002/jnr.2152010.1002/jnr.21520Search in Google Scholar PubMed

[77] Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., et al., Low-frequency repetitive transcranifal magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in Autism, Appl Psychophysiol Biofeedback, 2010, 35, 147–161. http://dx.doi.org/10.1007/s10484-009-9121-210.1007/s10484-009-9121-2Search in Google Scholar PubMed PubMed Central

Published Online: 2010-10-22
Published in Print: 2010-6-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/v10134-010-0024-9/html
Scroll to top button