Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2017

13-11-2015 | Original Article

Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task

Auteurs: Luz Bavassi, Juan E. Kamienkowski, Mariano Sigman, Rodrigo Laje

Gepubliceerd in: Psychological Research | Uitgave 1/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.
Literatuur
go back to reference Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain and Cognition, 48(1), 66–79.CrossRefPubMed Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain and Cognition, 48(1), 66–79.CrossRefPubMed
go back to reference Bavassi, L., Tagliazucchi, E., & Laje, R. (2013). Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism. Human Movement Science, 32(1), 21–47.CrossRefPubMed Bavassi, L., Tagliazucchi, E., & Laje, R. (2013). Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism. Human Movement Science, 32(1), 21–47.CrossRefPubMed
go back to reference Bijsterbosch, J., Lee, K., Hunter, M., Tsoi, D., Lankappa, S., Wilkinson, I., … Woodruff, P. (2011). The Role of the Cerebellum in Sub- and Supraliminal Error Correction during Sensorimotor Synchronization: Evidence from fMRI and TMS. Journal of Cognitive Neuroscience, 23(5), 1100–1112.CrossRefPubMed Bijsterbosch, J., Lee, K., Hunter, M., Tsoi, D., Lankappa, S., Wilkinson, I., … Woodruff, P. (2011). The Role of the Cerebellum in Sub- and Supraliminal Error Correction during Sensorimotor Synchronization: Evidence from fMRI and TMS. Journal of Cognitive Neuroscience, 23(5), 1100–1112.CrossRefPubMed
go back to reference Chen, Y., Ding, M., & Kelso, J. A. (2001). Origins of timing errors in human sensorimotor coordination. Journal of Motor Behavior, 33(1), 3–8.CrossRefPubMed Chen, Y., Ding, M., & Kelso, J. A. (2001). Origins of timing errors in human sensorimotor coordination. Journal of Motor Behavior, 33(1), 3–8.CrossRefPubMed
go back to reference Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., & Riviere, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4(7), 752–758.CrossRefPubMed Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., & Riviere, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4(7), 752–758.CrossRefPubMed
go back to reference Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMed Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMed
go back to reference Dhamala, M., Pagnoni, G., Wiesenfeld, K., Zink, C., Martin, M., & Berns, G. (2003). Neural correlates of the complexity of rhythmic finger tapping. NeuroImage, 20, 918–926.CrossRefPubMed Dhamala, M., Pagnoni, G., Wiesenfeld, K., Zink, C., Martin, M., & Berns, G. (2003). Neural correlates of the complexity of rhythmic finger tapping. NeuroImage, 20, 918–926.CrossRefPubMed
go back to reference Duda, R., Hart, P., & Stork, D. (2000). “Pattern Classification “(2nd ed.). New Jersey: Wiley. Duda, R., Hart, P., & Stork, D. (2000). “Pattern Classification “(2nd ed.). New Jersey: Wiley.
go back to reference Hary, D., & Moore, G. (1987). Synchronizing human movement with an external clock source. Biological Cybernetics, 56(5), 305–311.CrossRefPubMed Hary, D., & Moore, G. (1987). Synchronizing human movement with an external clock source. Biological Cybernetics, 56(5), 305–311.CrossRefPubMed
go back to reference Hemmelmann, C., Horn, M., Reiterer, S., Schack, B., Süsse, T., & Weiss, S. (2004). Multivariate tests for the evaluation of high-dimensional EEG data. Journal of Neuroscience Methods, 139(1), 111–120.CrossRefPubMed Hemmelmann, C., Horn, M., Reiterer, S., Schack, B., Süsse, T., & Weiss, S. (2004). Multivariate tests for the evaluation of high-dimensional EEG data. Journal of Neuroscience Methods, 139(1), 111–120.CrossRefPubMed
go back to reference Hove, M. J., Balasubramaniam, R., & Keller, P. E. (2014). The time course of phase correction: a kinematic investigation of motor adjustment to timing perturbations during sensorimotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2243.PubMedPubMedCentral Hove, M. J., Balasubramaniam, R., & Keller, P. E. (2014). The time course of phase correction: a kinematic investigation of motor adjustment to timing perturbations during sensorimotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2243.PubMedPubMedCentral
go back to reference Jancke, L., Loose, R., Lutz, K., Specht, K., & Shah, N. (2000). Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research, 10, 51–66.CrossRefPubMed Jancke, L., Loose, R., Lutz, K., Specht, K., & Shah, N. (2000). Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research, 10, 51–66.CrossRefPubMed
go back to reference Kamienkowski, J. E., Ison, M. J., Quiroga, R. Q., & Sigman, M. (2012). “Fixation-related potentials in visual search: a combined EEG and eye tracking study”. Journal of Vision 12(7), 4.CrossRef Kamienkowski, J. E., Ison, M. J., Quiroga, R. Q., & Sigman, M. (2012). “Fixation-related potentials in visual search: a combined EEG and eye tracking study”. Journal of Vision 12(7), 4.CrossRef
go back to reference Large, E., & Jones, M. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119.CrossRef Large, E., & Jones, M. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119.CrossRef
go back to reference Lewis, P., Wing, A., Pope, P., Praamstra, P., & Miall, R. (2004). Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia, 42, 1301–1312.CrossRefPubMed Lewis, P., Wing, A., Pope, P., Praamstra, P., & Miall, R. (2004). Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia, 42, 1301–1312.CrossRefPubMed
go back to reference Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996).”Independent component analysis of electroencephalographic data.” Advances in neural information processing systems, 145–151. Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996).”Independent component analysis of electroencephalographic data.” Advances in neural information processing systems, 145–151.
go back to reference Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 167, 177–190.CrossRef Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 167, 177–190.CrossRef
go back to reference Mates, J. (1994a). A model of synchronization of motor acts to a stimulus sequence. Biological Cybernetics, 70(5), 463–473.CrossRefPubMed Mates, J. (1994a). A model of synchronization of motor acts to a stimulus sequence. Biological Cybernetics, 70(5), 463–473.CrossRefPubMed
go back to reference Mates, J. (1994b). A model of synchronization of motor acts to a stimulus sequence. Biological Cybernetics, 70(5), 475–484.CrossRefPubMed Mates, J. (1994b). A model of synchronization of motor acts to a stimulus sequence. Biological Cybernetics, 70(5), 475–484.CrossRefPubMed
go back to reference Merchant, H., Zarco, W., Pérez, O., Prado, L., & Bartolo, R. (2011). Measuring time with different neural chronometers during a synchronization-continuation task. Proceedings of the National Academy of Sciences, 108(49), 19784–19789.CrossRef Merchant, H., Zarco, W., Pérez, O., Prado, L., & Bartolo, R. (2011). Measuring time with different neural chronometers during a synchronization-continuation task. Proceedings of the National Academy of Sciences, 108(49), 19784–19789.CrossRef
go back to reference Michon, J. A., & Van der Valk, N. J. L. (1967). A dynamic model of timing behavior. Acta Psychologica, 27, 204–212.CrossRefPubMed Michon, J. A., & Van der Valk, N. J. L. (1967). A dynamic model of timing behavior. Acta Psychologica, 27, 204–212.CrossRefPubMed
go back to reference Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229–240.CrossRefPubMed Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229–240.CrossRefPubMed
go back to reference Molinari, M., Leggio, M., & Thaut, M. (2007). The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. The Cerebellum, 6(1), 18–23.CrossRefPubMed Molinari, M., Leggio, M., & Thaut, M. (2007). The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. The Cerebellum, 6(1), 18–23.CrossRefPubMed
go back to reference Müller, K., Schmitz, F., Schnitzler, A., Freund, H., Aschersleben, G., & Prinz, W. (2000). Neuromagnetic correlates of sensorimotor synchronization. Journal of Cognitive Neuroscience, 12(4), 546–555.CrossRefPubMed Müller, K., Schmitz, F., Schnitzler, A., Freund, H., Aschersleben, G., & Prinz, W. (2000). Neuromagnetic correlates of sensorimotor synchronization. Journal of Cognitive Neuroscience, 12(4), 546–555.CrossRefPubMed
go back to reference Peters, M. (1989). The relationship between variability of intertap intervals and interval duration. Psychological Research, 51(1), 38–42.CrossRef Peters, M. (1989). The relationship between variability of intertap intervals and interval duration. Psychological Research, 51(1), 38–42.CrossRef
go back to reference Pollok, B., Gross, J., Kamp, D., & Schnitzler, A. (2008). Evidence for anticipatory motor control within a Cerebello-Diencephalic-Parietal Network. Journal of Cognitive Neuroscience, 20(5), 828–840.CrossRefPubMed Pollok, B., Gross, J., Kamp, D., & Schnitzler, A. (2008). Evidence for anticipatory motor control within a Cerebello-Diencephalic-Parietal Network. Journal of Cognitive Neuroscience, 20(5), 828–840.CrossRefPubMed
go back to reference Pollok, B., Müller, K., Aschersleben, G., Schmitz, F., Schnitzler, A., & Prinz, W. (2003). Cortical activations associated with auditorily paced finger tapping. NeuroReport, 14(2), 247–250.CrossRefPubMed Pollok, B., Müller, K., Aschersleben, G., Schmitz, F., Schnitzler, A., & Prinz, W. (2003). Cortical activations associated with auditorily paced finger tapping. NeuroReport, 14(2), 247–250.CrossRefPubMed
go back to reference Pollok, B., Müller, K., Aschersleben, G., Schnitzler, A. & Prinz, W. (2004). “The role of the primary somatosensory cortex in an auditorily paced finger tapping task.” Experimental Brain Research 156(1):111–117. Pollok, B., Müller, K., Aschersleben, G., Schnitzler, A. & Prinz, W. (2004). “The role of the primary somatosensory cortex in an auditorily paced finger tapping task.” Experimental Brain Research 156(1):111–117.
go back to reference Praamstra, P., Turgeon, M., Hesse, C., Wing, A., & Perryer, L. (2003). Neurophysiological correlates of error correction in sensorimotor-synchronization. NeuroImage, 20(2), 1283–1297.CrossRefPubMed Praamstra, P., Turgeon, M., Hesse, C., Wing, A., & Perryer, L. (2003). Neurophysiological correlates of error correction in sensorimotor-synchronization. NeuroImage, 20(2), 1283–1297.CrossRefPubMed
go back to reference Pressing, J., & Jolley-Rogers, G. (1997). Spectral properties of human cognition and skill. Biological Cybernetics, 76(5), 339–347.CrossRefPubMed Pressing, J., & Jolley-Rogers, G. (1997). Spectral properties of human cognition and skill. Biological Cybernetics, 76(5), 339–347.CrossRefPubMed
go back to reference Repp, B. (2002). Phase correction in sensorimotor synchronization: nonlinearities in voluntary and involuntary responses to perturbations. Human Movement Science, 21(1), 1–37.CrossRefPubMed Repp, B. (2002). Phase correction in sensorimotor synchronization: nonlinearities in voluntary and involuntary responses to perturbations. Human Movement Science, 21(1), 1–37.CrossRefPubMed
go back to reference Repp, B. (2003). Rate limits in sensorimotor synchronization with auditory and visual sequences: the synchronization threshold and the benefits and costs of interval subdivision. Journal of Motor Behavior, 35(4), 355–370.CrossRefPubMed Repp, B. (2003). Rate limits in sensorimotor synchronization with auditory and visual sequences: the synchronization threshold and the benefits and costs of interval subdivision. Journal of Motor Behavior, 35(4), 355–370.CrossRefPubMed
go back to reference Repp, B. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969–992.CrossRef Repp, B. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969–992.CrossRef
go back to reference Repp, B. (2011). Tapping in synchrony with a perturbed metronome: the phase correction response to small and large phase shifts as a function of tempo. Journal of Motor Behavior, 43(3), 213–227.CrossRefPubMed Repp, B. (2011). Tapping in synchrony with a perturbed metronome: the phase correction response to small and large phase shifts as a function of tempo. Journal of Motor Behavior, 43(3), 213–227.CrossRefPubMed
go back to reference Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1085.PubMed Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1085.PubMed
go back to reference Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452.CrossRef Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452.CrossRef
go back to reference Rodríguez-Fornells, A., Kurzbuch, A. R., & Münte, T. F. (2002). Time course of error detection and correction in humans: neurophysiological evidence. The Journal of Neuroscience 22(22), 9990–9996. Rodríguez-Fornells, A., Kurzbuch, A. R., & Münte, T. F. (2002). Time course of error detection and correction in humans: neurophysiological evidence. The Journal of Neuroscience 22(22), 9990–9996.
go back to reference Schulze, H., Cordes, A., & Vorberg, D. (2005). Keeping synchrony while tempo changes: accelerando and ritardando. Music Perception, 22(3), 461–477.CrossRef Schulze, H., Cordes, A., & Vorberg, D. (2005). Keeping synchrony while tempo changes: accelerando and ritardando. Music Perception, 22(3), 461–477.CrossRef
go back to reference Sigman, M., & Dehaene, S. (2008). Brain mechanisms of serial and parallel processing during dual-task performance. The Journal of Neuroscience, 28(30), 7585–7598.CrossRefPubMed Sigman, M., & Dehaene, S. (2008). Brain mechanisms of serial and parallel processing during dual-task performance. The Journal of Neuroscience, 28(30), 7585–7598.CrossRefPubMed
go back to reference Thaut, M., Tian, B., & Azimi-Sadjadi, M. R. (1998). Rhythmic finger tapping to cosine-wave modulated metronome sequences: evidence of subliminal entrainment. Human Movement Science, 17(6), 839–863.CrossRef Thaut, M., Tian, B., & Azimi-Sadjadi, M. R. (1998). Rhythmic finger tapping to cosine-wave modulated metronome sequences: evidence of subliminal entrainment. Human Movement Science, 17(6), 839–863.CrossRef
go back to reference Vorberg, D., & Schulze, H. (2002). Linear phase-correction in synchronization: predictions, parameter estimation, and simulations. Journal of Mathematical Psychology, 46(1), 56–87.CrossRef Vorberg, D., & Schulze, H. (2002). Linear phase-correction in synchronization: predictions, parameter estimation, and simulations. Journal of Mathematical Psychology, 46(1), 56–87.CrossRef
go back to reference Wing, A., & Kristofferson, A. (1973a). Response delays and the timing of discrete motor responses. Attention, Perception, & Psychophysics, 14(1), 5–12.CrossRef Wing, A., & Kristofferson, A. (1973a). Response delays and the timing of discrete motor responses. Attention, Perception, & Psychophysics, 14(1), 5–12.CrossRef
go back to reference Wing, A., & Kristofferson, A. (1973b). The timing of interresponse intervals. Attention, Perception, & Psychophysics, 13(3), 5–12.CrossRef Wing, A., & Kristofferson, A. (1973b). The timing of interresponse intervals. Attention, Perception, & Psychophysics, 13(3), 5–12.CrossRef
go back to reference Zanto, T., Snyder, J., & Large, E. (2006). Neural correlates of rhythmic expectancy. Advances in cognitive psychology, 2(2–3), 221–231.CrossRef Zanto, T., Snyder, J., & Large, E. (2006). Neural correlates of rhythmic expectancy. Advances in cognitive psychology, 2(2–3), 221–231.CrossRef
Metagegevens
Titel
Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task
Auteurs
Luz Bavassi
Juan E. Kamienkowski
Mariano Sigman
Rodrigo Laje
Publicatiedatum
13-11-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2017
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0721-6

Andere artikelen Uitgave 1/2017

Psychological Research 1/2017 Naar de uitgave