Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2016

25-11-2015 | Original Article

Counting is a spatial process: evidence from eye movements

Auteurs: Matthias Hartmann, Fred W. Mast, Martin H. Fischer

Gepubliceerd in: Psychological Research | Uitgave 3/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Spatial–numerical associations (small numbers—left/lower space and large numbers—right/upper space) are regularly found in simple number categorization tasks. These associations were taken as evidence for a spatially oriented mental number line. However, the role of spatial–numerical associations during more complex number processing, such as counting or mental arithmetic is less clear. Here, we investigated whether counting is associated with a movement along the mental number line. Participants counted aloud upward or downward in steps of 3 for 45 s while looking at a blank screen. Gaze position during upward counting shifted rightward and upward, while the pattern for downward counting was less clear. Our results, therefore, confirm the hypothesis of a movement along the mental number line for addition. We conclude that space is not only used to represent number magnitudes but also to actively operate on numbers in more complex tasks such as counting, and that the eyes reflect this spatial mental operation.
Voetnoten
1
The algorithm checks the dispersion of consecutive data points in a moving window by summing the differences between the points’ maximum and minimum x and y values ([max(x) – min(x)] + [max(y) – min(y)]). If the sum is below 100 pixels, the window represents a fixation and expands until the sum exceeds 100 pixels. The final window is registered as fixation with a duration corresponding to the interval between the timestamps of the first and last included sample. The centroid of the included points determines the x and y coordinate of the fixation.
 
2
Seven participants indeed performed their last few downward counting steps in the negative range (on average 4.2 counting steps, which cover approximately 15 % of their counting time). Counting downward in the negative range is similar to counting upwards and might potentially influence the hypothesized mental movement. However, visual inspection of the last part of the gaze path during downward counting for these seven participants showed no systematically different pattern when compared to the terminal gaze path of the other participants, and these cases were not treated differently. From the 11 participants who did not reach the negative range, only two had the number “2” as final counting result (which is the last number before reaching the negative range). These two participants reached “2” at the end of their counting time, as noted by the experimenter, suggesting that no participant stopped counting when reaching zero.
 
3
For sum-coded predictors (addition = 1, subtraction = −1), two times the estimate (104 pixels) reflect the mean difference between upward and downward counting. Note that this value is slightly different from the value we reported above (111 pixels); this difference is mainly driven by the different averaging procedure (over 1-s time points).
 
4
To validate the use of pupil size as indicator of cognitive effort, we first conducted another linear mixed model analysis with pupil size as fixed effect and participant as random intercept on response times, separately for addition and subtraction trials. Consistent with previous work (e.g., Kahneman et al., 1969; Nakayama et al., 2002), pupil size was a significant predictor of response times for both addition and subtraction trials (both ps < .001); response time increased with increasing pupil size, confirming that pupil size reliably reflects task difficulty.
 
5
Even though the counting task still requires alternating between addition and subtraction trials (as in Anelli et al., 2014; Lugli et al., 2013), participants performed continuous additions and subtractions within one trial before they switched to the other operation.
 
Literatuur
go back to reference Alibali, M. W., & DiRusso, A. A. (1999). The function of gesture in learning to count: more than keeping track. Cognitive Development, 14(1), 37–56.CrossRef Alibali, M. W., & DiRusso, A. A. (1999). The function of gesture in learning to count: more than keeping track. Cognitive Development, 14(1), 37–56.CrossRef
go back to reference Andin, J., Fransson, P., Rönnberg, J., & Rudner, M. (2015). Phonology and arithmetic in the language–calculation network. Brain and Language, 143, 97–105.CrossRefPubMed Andin, J., Fransson, P., Rönnberg, J., & Rudner, M. (2015). Phonology and arithmetic in the language–calculation network. Brain and Language, 143, 97–105.CrossRefPubMed
go back to reference Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology, 5, 1459.CrossRefPubMedPubMedCentral Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology, 5, 1459.CrossRefPubMedPubMedCentral
go back to reference Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data and theory. Cognition, 44(1–2), 75–106.CrossRefPubMed Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data and theory. Cognition, 44(1–2), 75–106.CrossRefPubMed
go back to reference Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology Human Learning and Memory, 4(5), 527.CrossRef Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology Human Learning and Memory, 4(5), 527.CrossRef
go back to reference Barrouillet, P., & Lépine, R. (2005). Working memory and children’s use of retrieval to solve addition problems. Journal of Experimental Child Psychology, 91(3), 183–204.CrossRefPubMed Barrouillet, P., & Lépine, R. (2005). Working memory and children’s use of retrieval to solve addition problems. Journal of Experimental Child Psychology, 91(3), 183–204.CrossRefPubMed
go back to reference Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-8. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-8.
go back to reference Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition facts: the role of number comparison. The Quarterly Journal of Experimental Psychology Section A, 54(4), 1005–1029. doi:10.1080/713756007.CrossRef Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition facts: the role of number comparison. The Quarterly Journal of Experimental Psychology Section A, 54(4), 1005–1029. doi:10.​1080/​713756007.CrossRef
go back to reference Campbell, J. I. D. (2005). Handbook of mathematical cognition. New York: Psychology Press. Campbell, J. I. D. (2005). Handbook of mathematical cognition. New York: Psychology Press.
go back to reference Carlson, R. A., Ayraamides, M. N., Cary, M., & Strasberg, S. (2007). What do the hands externalize in simple arithmetic. Journal of Experimental Psychology Learning Memory and Cognition, 33, 747–756.CrossRef Carlson, R. A., Ayraamides, M. N., Cary, M., & Strasberg, S. (2007). What do the hands externalize in simple arithmetic. Journal of Experimental Psychology Learning Memory and Cognition, 33, 747–756.CrossRef
go back to reference Cassia, V. M., McCrink, K., de Hevia, M. D., Gariboldi, V., & Bulf, H. (under review). Operational momentum and size ordering in preverbal infants. Psychological Research. Cassia, V. M., McCrink, K., de Hevia, M. D., Gariboldi, V., & Bulf, H. (under review). Operational momentum and size ordering in preverbal infants. Psychological Research.
go back to reference Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.CrossRefPubMed Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.CrossRefPubMed
go back to reference Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology General, 122(3), 371–396.CrossRef Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology General, 122(3), 371–396.CrossRef
go back to reference Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York: Psychology Press. Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York: Psychology Press.
go back to reference Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392.CrossRefPubMed Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392.CrossRefPubMed
go back to reference Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. Cognitive Processing, 13(1), 161–164.CrossRef Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. Cognitive Processing, 13(1), 161–164.CrossRef
go back to reference Fischer, M. H., & Brugger, P. (2011). When digits help digits: spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2. Fischer, M. H., & Brugger, P. (2011). When digits help digits: spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2.
go back to reference Fischer, M. H., & Rottmann, J. (2005). Do negative numbers have a place on the mental number line. Psychology Science, 47(1), 22–32. Fischer, M. H., & Rottmann, J. (2005). Do negative numbers have a place on the mental number line. Psychology Science, 47(1), 22–32.
go back to reference Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology Learning Memory and Cognition, 10(1), 126.CrossRef Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology Learning Memory and Cognition, 10(1), 126.CrossRef
go back to reference Ganor-Stern, D., Pinhas, M., Kallai, A., & Tzelgov, J. (2010). Holistic representation of negative numbers is formed when needed for the task. The Quarterly Journal of Experimental Psychology, 63(10), 1969–1981.CrossRefPubMed Ganor-Stern, D., Pinhas, M., Kallai, A., & Tzelgov, J. (2010). Holistic representation of negative numbers is formed when needed for the task. The Quarterly Journal of Experimental Psychology, 63(10), 1969–1981.CrossRefPubMed
go back to reference Gao, X., Yan, H., & Sun, H. (2015). Modulation of microsaccade rate by task difficulty revealed through between- and within-trial comparisons. Journal of Vision, 15(3), 1–15.CrossRef Gao, X., Yan, H., & Sun, H. (2015). Modulation of microsaccade rate by task difficulty revealed through between- and within-trial comparisons. Journal of Vision, 15(3), 1–15.CrossRef
go back to reference Gevers, W., Santens, S., Dhooge, E., Chen, Q., Bossche, L., Fias, W., et al. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology General, 139, 180–190.CrossRefPubMed Gevers, W., Santens, S., Dhooge, E., Chen, Q., Bossche, L., Fias, W., et al. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology General, 139, 180–190.CrossRefPubMed
go back to reference Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: a review of cultural and linguistic influences on the development of number processing. Journal of Cross Cultural Psychology, 42(4), 543–565.CrossRef Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: a review of cultural and linguistic influences on the development of number processing. Journal of Cross Cultural Psychology, 42(4), 543–565.CrossRef
go back to reference Grade, S., Lefèvre, N., & Pesenti, M. (2012). Influence of gaze observation on random number generation. Experimental Psychology, 60, 122–130.CrossRef Grade, S., Lefèvre, N., & Pesenti, M. (2012). Influence of gaze observation on random number generation. Experimental Psychology, 60, 122–130.CrossRef
go back to reference Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: guiding attention guides thought. Psychological Science, 14(5), 462–466.CrossRefPubMed Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: guiding attention guides thought. Psychological Science, 14(5), 462–466.CrossRefPubMed
go back to reference Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329.CrossRef Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329.CrossRef
go back to reference Gross, J., Hudson, C., & Price, D. (2009). The long term costs of numeracy difficulties. London: Every Child a Chance Trust and KPMG. Gross, J., Hudson, C., & Price, D. (2009). The long term costs of numeracy difficulties. London: Every Child a Chance Trust and KPMG.
go back to reference Hartmann, M., Gashaj, V., Stahnke, A., & Mast, F. (2014a). There is more than “more is up”: hand and foot responses reverse the vertical association of number magnitudes. Journal of Experimental Psychology Human Perception and Performance, 40(4), 1401–1414. doi:10.1037/a0036686.CrossRefPubMed Hartmann, M., Gashaj, V., Stahnke, A., & Mast, F. (2014a). There is more than “more is up”: hand and foot responses reverse the vertical association of number magnitudes. Journal of Experimental Psychology Human Perception and Performance, 40(4), 1401–1414. doi:10.​1037/​a0036686.CrossRefPubMed
go back to reference Hartmann, M., Grabherr, L., & Mast, F. W. (2012b). Moving along the mental number line: interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology Human Perception and Performance, 38(6), 1416–1427. doi:10.1037/a0026706.CrossRefPubMed Hartmann, M., Grabherr, L., & Mast, F. W. (2012b). Moving along the mental number line: interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology Human Perception and Performance, 38(6), 1416–1427. doi:10.​1037/​a0026706.CrossRefPubMed
go back to reference Hartmann, M., Martarelli, C., Mast, F. W. (2014b). Eye movements during mental time travel follow a diagonal line. Conscious Cogn, 30, 201–209.CrossRefPubMed Hartmann, M., Martarelli, C., Mast, F. W. (2014b). Eye movements during mental time travel follow a diagonal line. Conscious Cogn, 30, 201–209.CrossRefPubMed
go back to reference Hubbard, T. L. (2014). Forms of momentum across space: representational, operational, and attentional. Psychonomic Bulletin Review, 21(6), 1371–1403.CrossRefPubMed Hubbard, T. L. (2014). Forms of momentum across space: representational, operational, and attentional. Psychonomic Bulletin Review, 21(6), 1371–1403.CrossRefPubMed
go back to reference Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Review Neuroscience, 6(6), 435–448.CrossRef Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Review Neuroscience, 6(6), 435–448.CrossRef
go back to reference Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: evidence from the SNARC effect. Memory Cognition, 32(4), 662–673.CrossRefPubMed Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: evidence from the SNARC effect. Memory Cognition, 32(4), 662–673.CrossRefPubMed
go back to reference Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 3.CrossRef Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 3.CrossRef
go back to reference Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167.CrossRefPubMed Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167.CrossRefPubMed
go back to reference Kennedy, A. (1983). On looking into space. In K. Rayner (Ed.), Eye movements in reading: perceptual and language processes (pp. 237–251). New York: Academic Press. Kennedy, A. (1983). On looking into space. In K. Rayner (Ed.), Eye movements in reading: perceptual and language processes (pp. 237–251). New York: Academic Press.
go back to reference Kinsbourne, M. (1972). Eye and head turning indicates cerebral lateralization. Science, 176(4034), 539–541.CrossRefPubMed Kinsbourne, M. (1972). Eye and head turning indicates cerebral lateralization. Science, 176(4034), 539–541.CrossRefPubMed
go back to reference Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? The Quarterly Journal of Experimental Psychology (Hove), 67(8), 1541–1556. doi:10.1080/17470218.2014.890234.CrossRef Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? The Quarterly Journal of Experimental Psychology (Hove), 67(8), 1541–1556. doi:10.​1080/​17470218.​2014.​890234.CrossRef
go back to reference Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: evidence from the operational momentum effect. Attention Perception Psychophysics, 71(4), 803–821. doi:10.3758/APP.71.4.803.CrossRef Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: evidence from the operational momentum effect. Attention Perception Psychophysics, 71(4), 803–821. doi:10.​3758/​APP.​71.​4.​803.CrossRef
go back to reference Lakoff, G., & Johnson, M. (1980). Conceptual metaphor in everyday language. The Journal of Philosophy, 77(8), 453–486.CrossRef Lakoff, G., & Johnson, M. (1980). Conceptual metaphor in everyday language. The Journal of Philosophy, 77(8), 453–486.CrossRef
go back to reference Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting is easier while experiencing a congruent motion. PLoS One, 8(5), e64500.CrossRefPubMedPubMedCentral Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting is easier while experiencing a congruent motion. PLoS One, 8(5), e64500.CrossRefPubMedPubMedCentral
go back to reference Marghetis, T., Nunez, R., & Bergen, B. K. (2014). Doing arithmetic by hand: hand movements during exact arithmetic reveal systematic, dynamic spatial processing. The Quarterly Journal of Experimental Psychology (Hove), 67(8), 1579–1596. doi:10.1080/17470218.2014.897359.CrossRef Marghetis, T., Nunez, R., & Bergen, B. K. (2014). Doing arithmetic by hand: hand movements during exact arithmetic reveal systematic, dynamic spatial processing. The Quarterly Journal of Experimental Psychology (Hove), 67(8), 1579–1596. doi:10.​1080/​17470218.​2014.​897359.CrossRef
go back to reference McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8), 1324–1333.CrossRefPubMed McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8), 1324–1333.CrossRefPubMed
go back to reference Mock, J., Huber, S., Klein, E., Moeller, K. (under review). Insights into numerical cognition—considering eye-fixations in number processing and arithmetic. Psychological Research. Mock, J., Huber, S., Klein, E., Moeller, K. (under review). Insights into numerical cognition—considering eye-fixations in number processing and arithmetic. Psychological Research.
go back to reference Myachykov, A., Cangelosi, A., Ellis, R., & Fischer, M. H. (2015a). The ocular resonance effect in spatial-numerical mapping. Acta Psychologica, 161, 162–169.CrossRefPubMed Myachykov, A., Cangelosi, A., Ellis, R., & Fischer, M. H. (2015a). The ocular resonance effect in spatial-numerical mapping. Acta Psychologica, 161, 162–169.CrossRefPubMed
go back to reference Myachykov, A., Ellis, R., Changeolosi, A., & Fischer, M. H. (under review). Ocular drift along the mental number line. Psychological Research. Myachykov, A., Ellis, R., Changeolosi, A., & Fischer, M. H. (under review). Ocular drift along the mental number line. Psychological Research.
go back to reference Nakayama, M., Takahashi, K., & Shimizu, Y. (2002). The act of task difficulty and eye-movement frequency for the ‘Oculo-motor indices’. In Proceedings of the 2002 symposium on Eye tracking research and applications (pp. 37–42): ACM Nakayama, M., Takahashi, K., & Shimizu, Y. (2002). The act of task difficulty and eye-movement frequency for the ‘Oculo-motor indices’. In Proceedings of the 2002 symposium on Eye tracking research and applications (pp. 37–42): ACM
go back to reference Parsons, S., & Bynner, J. (2005). Does numeracy matter more?. London: National Research and Development Centre for Adult Literacy and Numeracy. Parsons, S., & Bynner, J. (2005). Does numeracy matter more?. London: National Research and Development Centre for Adult Literacy and Numeracy.
go back to reference R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
go back to reference Ranzini, M., Lisi, M., Zorzi, M. (under review). Voluntary eye movements direct attention on the mental number space. Psychological Research. Ranzini, M., Lisi, M., Zorzi, M. (under review). Voluntary eye movements direct attention on the mental number space. Psychological Research.
go back to reference Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274.CrossRef Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274.CrossRef
go back to reference Shaki, S., & Fischer, M. H. (2012). Multiple spatial mappings in numerical cognition. Journal of Experimental Psychology Human Perception and Performance, 38(3), 804.CrossRefPubMed Shaki, S., & Fischer, M. H. (2012). Multiple spatial mappings in numerical cognition. Journal of Experimental Psychology Human Perception and Performance, 38(3), 804.CrossRefPubMed
go back to reference Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232, 43–49.CrossRefPubMed Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232, 43–49.CrossRefPubMed
go back to reference Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1994). Orienting of attention and eye movements. Experimental Brain Research, 98(3), 507–522.CrossRefPubMed Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1994). Orienting of attention and eye movements. Experimental Brain Research, 98(3), 507–522.CrossRefPubMed
go back to reference Siegenthaler, E., Costela, F. M., McCamy, M. B., Di Stasi, L. L., Otero-Millan, J., Sonderegger, A., et al. (2014). Task difficulty in mental arithmetic affects microsaccadic rates and magnitudes. European Journal of Neuroscience, 39, 287–294.CrossRefPubMed Siegenthaler, E., Costela, F. M., McCamy, M. B., Di Stasi, L. L., Otero-Millan, J., Sonderegger, A., et al. (2014). Task difficulty in mental arithmetic affects microsaccadic rates and magnitudes. European Journal of Neuroscience, 39, 287–294.CrossRefPubMed
go back to reference Singmann, H., & Bolker, M. (2014). afex: analysis of factorial experiments. R package version 0.12–135 Singmann, H., & Bolker, M. (2014). afex: analysis of factorial experiments. R package version 0.12–135
go back to reference Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: eye movements to absent objects. Psychological Research, 65(4), 235–241.CrossRefPubMed Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: eye movements to absent objects. Psychological Research, 65(4), 235–241.CrossRefPubMed
go back to reference Stocker, K., Hartmann, M., Martarelli, C., & Mast, F. W. (2015). Eye movements reveal mental scanning through time. Cognitive Science, 1-23. doi:10.1111/cogs.12301 Stocker, K., Hartmann, M., Martarelli, C., & Mast, F. W. (2015). Eye movements reveal mental scanning through time. Cognitive Science, 1-23. doi:10.​1111/​cogs.​12301
go back to reference Tzelgov, J., Ganor-Stern, D., & Maymon-Schreiber, K. (2009). The representation of negative numbers: exploring the effects of mode of processing and notation. The Quarterly Journal of Experimental Psychology, 62(3), 605–624.CrossRefPubMed Tzelgov, J., Ganor-Stern, D., & Maymon-Schreiber, K. (2009). The representation of negative numbers: exploring the effects of mode of processing and notation. The Quarterly Journal of Experimental Psychology, 62(3), 605–624.CrossRefPubMed
go back to reference Van Gompel, R. P. G., Fischer, M. H., Murray, W., & Hill, R. L. (2007). Eye movements: a window on mind and brain. Oxford: Elsevier. Van Gompel, R. P. G., Fischer, M. H., Murray, W., & Hill, R. L. (2007). Eye movements: a window on mind and brain. Oxford: Elsevier.
go back to reference Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: an abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385.CrossRefPubMed Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: an abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385.CrossRefPubMed
go back to reference Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cognitive Science, 7(11), 483–488.CrossRef Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cognitive Science, 7(11), 483–488.CrossRef
go back to reference Walsh, V. (2014). A theory of magnitude: the parts that sum to numbers. In R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition. Oxford: Oxford Universtiy Press. Walsh, V. (2014). A theory of magnitude: the parts that sum to numbers. In R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition. Oxford: Oxford Universtiy Press.
go back to reference Winter, B., Marghetis, T., & Matlock, T. (2015a). Of magnitudes and metaphors: explaining cognitive interactions between space, time, and number. Cortex, 64, 209–224.CrossRefPubMed Winter, B., Marghetis, T., & Matlock, T. (2015a). Of magnitudes and metaphors: explaining cognitive interactions between space, time, and number. Cortex, 64, 209–224.CrossRefPubMed
go back to reference Winter, B., & Matlock, T. (2013). More is up … and right: random number generation along two axes. In M. Knauff, N. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 3789–3794). Austin: Cognitive Science Society. Winter, B., & Matlock, T. (2013). More is up … and right: random number generation along two axes. In M. Knauff, N. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 3789–3794). Austin: Cognitive Science Society.
go back to reference Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015b). Mental number space in three dimensions. Neuroscience and Biobehavioral Reviews, 57, 209–219.CrossRefPubMed Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015b). Mental number space in three dimensions. Neuroscience and Biobehavioral Reviews, 57, 209–219.CrossRefPubMed
go back to reference Yu, X., Liu, J., Li, D., Cui, J., & Zhou, X. (under review). Dynamic mental number line in symple arithmetic. Psychological Research. Yu, X., Liu, J., Li, D., Cui, J., & Zhou, X. (under review). Dynamic mental number line in symple arithmetic. Psychological Research.
go back to reference Zbrodoff, N. J., & Logan, G. D. (1990). On the relation between production and verification tasks in the psychology of simple arithmetic. Journal of Experimental Psychology Learning Memory and Cognition, 16(1), 83–97.CrossRef Zbrodoff, N. J., & Logan, G. D. (1990). On the relation between production and verification tasks in the psychology of simple arithmetic. Journal of Experimental Psychology Learning Memory and Cognition, 16(1), 83–97.CrossRef
Metagegevens
Titel
Counting is a spatial process: evidence from eye movements
Auteurs
Matthias Hartmann
Fred W. Mast
Martin H. Fischer
Publicatiedatum
25-11-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2016
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0722-5

Andere artikelen Uitgave 3/2016

Psychological Research 3/2016 Naar de uitgave