Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2021

02-08-2020 | Original Article

Imagining handwriting movements in a usual or unusual position: effect of posture congruency on visual and kinesthetic motor imagery

Auteurs: Jessica Guilbert, Jonathan Fernandez, Michèle Molina, Marie-France Morin, Denis Alamargot

Gepubliceerd in: Psychological Research | Uitgave 6/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Motor imagery has been used in training programs to improve the performance of motor skills. Handwriting movement may benefit from motor imagery training. To optimize the efficacy of this kind of training, it is important to identify the factors that facilitate the motor imagery process for handwriting movements. Several studies have shown that motor imagery is more easily achieved when there is maximum compatibility between the actual posture and the imagined movement. We, therefore, examined the effect of posture congruency on visual and kinesthetic motor imagery for handwriting movements. Adult participants had to write and imagine writing a sentence by focusing on the evocation of either the kinesthetic or visual consequences of the motion. Half the participants performed the motor imagery task in a congruent posture (sitting with a hand ready for writing), and half in an incongruent one (standing with arms crossed behind the back and fingers spread wide). The temporal similarity between actual and imagined movement times and the vividness of the motor imagery were evaluated. Results revealed that temporal similarity was stronger in the congruent posture condition than in the incongruent one. Furthermore, in the incongruent posture condition, participants reported greater difficulty forming a precise kinesthetic motor image of themselves writing than a visual image, whereas no difference was observed in the congruent posture condition. Taken together, our results show that postural information is taken into account during the mental simulation of handwriting movements. The implications of these findings for guiding the design of motor imagery training are discussed.
Literatuur
go back to reference Adams, I. L., Smits-Engelsman, B., Lust, J. M., Wilson, P. H., & Steenbergen, B. (2017). Feasibility of motor imagery training for children with developmental coordination disorder—a pilot study. Frontiers in Psychology, 8, 1271.PubMedPubMedCentralCrossRef Adams, I. L., Smits-Engelsman, B., Lust, J. M., Wilson, P. H., & Steenbergen, B. (2017). Feasibility of motor imagery training for children with developmental coordination disorder—a pilot study. Frontiers in Psychology, 8, 1271.PubMedPubMedCentralCrossRef
go back to reference Alamargot, D., Chesnet, D., & Caporossi, G. (2012). Using eye and pen movements to study the writing process. In M. Fayol, D. Alamargot, & V. Berninger (Eds.), Translation of thought to written text while composing: Advancing theory, knowledge, research methods, tools, and applications (pp. 315–338). New York: Taylor & Francis. Alamargot, D., Chesnet, D., & Caporossi, G. (2012). Using eye and pen movements to study the writing process. In M. Fayol, D. Alamargot, & V. Berninger (Eds.), Translation of thought to written text while composing: Advancing theory, knowledge, research methods, tools, and applications (pp. 315–338). New York: Taylor & Francis.
go back to reference Alamargot, D., & Morin, M.-F. (2015). Does handwriting on a tablet screen impact students’ graphomotor execution? A comparison between grades 2 and 9. Human Movement Science, 44, 32–41.PubMedCrossRef Alamargot, D., & Morin, M.-F. (2015). Does handwriting on a tablet screen impact students’ graphomotor execution? A comparison between grades 2 and 9. Human Movement Science, 44, 32–41.PubMedCrossRef
go back to reference Assaiante, C., Barlaam, F., Cignetti, F., & Vaugoyeau, M. (2014). Body schema building during childhood and adolescence: A neurosensory approach. Clinical Neurophysiology, 44(1), 3–12.PubMedCrossRef Assaiante, C., Barlaam, F., Cignetti, F., & Vaugoyeau, M. (2014). Body schema building during childhood and adolescence: A neurosensory approach. Clinical Neurophysiology, 44(1), 3–12.PubMedCrossRef
go back to reference Blakemore, S. J., & Sirigu, A. (2003). Action prediction in the cerebellum and in the parietal lobe. Experimental Brain Research, 153(2), 239–245.PubMedCrossRef Blakemore, S. J., & Sirigu, A. (2003). Action prediction in the cerebellum and in the parietal lobe. Experimental Brain Research, 153(2), 239–245.PubMedCrossRef
go back to reference Borghi, A. M., & Cimatti, F. (2010). Embodied cognition and beyond: Acting and sensing the body. Neuropsychologia, 48(3), 763–773.PubMedCrossRef Borghi, A. M., & Cimatti, F. (2010). Embodied cognition and beyond: Acting and sensing the body. Neuropsychologia, 48(3), 763–773.PubMedCrossRef
go back to reference Bremner, A. J., Hill, E. L., Pratt, M., Rigato, S., & Spence, C. (2013). Bodily illusions in young children: Developmental change in visual and proprioceptive contributions to perceived hand position. PLoS ONE, 8(1), e51887.PubMedPubMedCentralCrossRef Bremner, A. J., Hill, E. L., Pratt, M., Rigato, S., & Spence, C. (2013). Bodily illusions in young children: Developmental change in visual and proprioceptive contributions to perceived hand position. PLoS ONE, 8(1), e51887.PubMedPubMedCentralCrossRef
go back to reference Chartrel, E., & Vinter, A. (2006). Rôle des informations visuelles dans la production de lettres cursives chez l’enfant et l’adulte. L’Année psychologique, 106(01), 43–64.CrossRef Chartrel, E., & Vinter, A. (2006). Rôle des informations visuelles dans la production de lettres cursives chez l’enfant et l’adulte. L’Année psychologique, 106(01), 43–64.CrossRef
go back to reference Danna, J., & Velay, J.-L. (2015). Basic and supplementary sensory feedback in handwriting. Frontiers in Psychology, 6(169), 1–11. Danna, J., & Velay, J.-L. (2015). Basic and supplementary sensory feedback in handwriting. Frontiers in Psychology, 6(169), 1–11.
go back to reference Decety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Research, 77(1–2), 45–52.PubMedCrossRef Decety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Research, 77(1–2), 45–52.PubMedCrossRef
go back to reference Decety, J., Jeannerod, M., Durozard, D., & Baverel, G. (1993). Central activation of autonomic effectors during mental simulation of motor actions in man. The Journal of Physiology, 461(1), 549–563.PubMedPubMedCentralCrossRef Decety, J., Jeannerod, M., Durozard, D., & Baverel, G. (1993). Central activation of autonomic effectors during mental simulation of motor actions in man. The Journal of Physiology, 461(1), 549–563.PubMedPubMedCentralCrossRef
go back to reference Decety, J., Jeannerod, M., Germain, M., & Pastene, J. (1991). Vegetative response during imagined movement is proportional to mental effort. Behavioural Brain Research, 42(1), 1–5.PubMedCrossRef Decety, J., Jeannerod, M., Germain, M., & Pastene, J. (1991). Vegetative response during imagined movement is proportional to mental effort. Behavioural Brain Research, 42(1), 1–5.PubMedCrossRef
go back to reference Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behavioural Brain Research, 34(1–2), 35–42.PubMedCrossRef Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behavioural Brain Research, 34(1–2), 35–42.PubMedCrossRef
go back to reference Decety, J., & Michel, F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. Brain and Cognition, 11(1), 87–97.PubMedCrossRef Decety, J., & Michel, F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. Brain and Cognition, 11(1), 87–97.PubMedCrossRef
go back to reference de Lange, F. P., Helmich, R. C., & Toni, I. (2006). Posture influences motor imagery: An fMRI study. NeuroImage, 33(2), 609–617.PubMedCrossRef de Lange, F. P., Helmich, R. C., & Toni, I. (2006). Posture influences motor imagery: An fMRI study. NeuroImage, 33(2), 609–617.PubMedCrossRef
go back to reference Erhardt, R. P., & Meade, V. (2005). Improving handwriting without teaching handwriting: The consultative clinical reasoning process. Australian Occupational Therapy Journal, 52(3), 199–210.CrossRef Erhardt, R. P., & Meade, V. (2005). Improving handwriting without teaching handwriting: The consultative clinical reasoning process. Australian Occupational Therapy Journal, 52(3), 199–210.CrossRef
go back to reference Fadiga, L., & Craighero, L. (2004). Electrophysiology of action representation. Journal of Clinical Neurophysiology, 21(3), 157–169.PubMedCrossRef Fadiga, L., & Craighero, L. (2004). Electrophysiology of action representation. Journal of Clinical Neurophysiology, 21(3), 157–169.PubMedCrossRef
go back to reference Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance—a meta-analysis. Journal of Sport Psychology, 5(1), 25–57.CrossRef Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance—a meta-analysis. Journal of Sport Psychology, 5(1), 25–57.CrossRef
go back to reference Féry, Y.-A. (2003). Differentiating visual and kinesthetic imagery in mental practice. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 57(1), 1–10.PubMedCrossRef Féry, Y.-A. (2003). Differentiating visual and kinesthetic imagery in mental practice. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 57(1), 1–10.PubMedCrossRef
go back to reference Fourkas, A. D., Ionta, S., & Aglioti, S. M. (2006). Influence of imagined posture and imagery modality on corticospinal excitability. Behavioural Brain Research, 168(2), 190–196.PubMedCrossRef Fourkas, A. D., Ionta, S., & Aglioti, S. M. (2006). Influence of imagined posture and imagery modality on corticospinal excitability. Behavioural Brain Research, 168(2), 190–196.PubMedCrossRef
go back to reference Gabbard, C., Caçola, P., & Bobbio, T. (2011). Examining age-related movement representations for sequential (fine-motor) finger movements. Brain and Cognition, 77(3), 459–463.PubMedCrossRef Gabbard, C., Caçola, P., & Bobbio, T. (2011). Examining age-related movement representations for sequential (fine-motor) finger movements. Brain and Cognition, 77(3), 459–463.PubMedCrossRef
go back to reference Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J. B., Gaymard, B., Marsault, C., et al. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10(11), 1093–1104.PubMedCrossRef Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J. B., Gaymard, B., Marsault, C., et al. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10(11), 1093–1104.PubMedCrossRef
go back to reference Ghez, C., & Sainburg, R. (1995). Proprioceptive control of interjoint coordination. Canadian Journal of Physiology and Pharmacology, 73(2), 273–284.PubMedCrossRef Ghez, C., & Sainburg, R. (1995). Proprioceptive control of interjoint coordination. Canadian Journal of Physiology and Pharmacology, 73(2), 273–284.PubMedCrossRef
go back to reference Grush, R. (2004). The emulation theory of representation: Motor control, imagery and perception. Behavioral and Brain Sciences, 27, 377–396.CrossRefPubMed Grush, R. (2004). The emulation theory of representation: Motor control, imagery and perception. Behavioral and Brain Sciences, 27, 377–396.CrossRefPubMed
go back to reference Guilbert, J., Alamargot, D., & Morin, M. F. (2019). Handwriting on a tablet screen: Role of visual and proprioceptive feedback in the control of movement by children and adults. Human Movement Science, 65, 30–41.CrossRef Guilbert, J., Alamargot, D., & Morin, M. F. (2019). Handwriting on a tablet screen: Role of visual and proprioceptive feedback in the control of movement by children and adults. Human Movement Science, 65, 30–41.CrossRef
go back to reference Guilbert, J., Jouen, F., & Molina, M. (2018). Motor imagery development and proprioceptive integration: Which sensory reweighting during childhood? Journal of Experimental Child Psychology, 166, 621–634.PubMedCrossRef Guilbert, J., Jouen, F., & Molina, M. (2018). Motor imagery development and proprioceptive integration: Which sensory reweighting during childhood? Journal of Experimental Child Psychology, 166, 621–634.PubMedCrossRef
go back to reference Guilbert, J., Molina, M., & Jouen, F. (2016). Rôle des afférences proprioceptives dans le développement de l’imagerie motrice chez l’enfant. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 70(4), 343.PubMedCrossRef Guilbert, J., Molina, M., & Jouen, F. (2016). Rôle des afférences proprioceptives dans le développement de l’imagerie motrice chez l’enfant. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 70(4), 343.PubMedCrossRef
go back to reference Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37(1), 10–20.PubMedCrossRef Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37(1), 10–20.PubMedCrossRef
go back to reference Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain activity during visual versus kinesthetic imagery: An fMRI study. Human Brain Mapping, 30(7), 2157–2172.PubMedCrossRef Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain activity during visual versus kinesthetic imagery: An fMRI study. Human Brain Mapping, 30(7), 2157–2172.PubMedCrossRef
go back to reference Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012). Understanding the timing of motor imagery: Recent findings and future directions. International Review of Sport and Exercise Psychology, 5(1), 3–22.CrossRef Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012). Understanding the timing of motor imagery: Recent findings and future directions. International Review of Sport and Exercise Psychology, 5(1), 3–22.CrossRef
go back to reference Guillot, A., Lebon, F., & Collet, C. (2010). Electromyographic activity during motor imagery. In A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental and motor imagery (1st ed., pp. 83–93). Oxford: Oxford University Press.CrossRef Guillot, A., Lebon, F., & Collet, C. (2010). Electromyographic activity during motor imagery. In A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental and motor imagery (1st ed., pp. 83–93). Oxford: Oxford University Press.CrossRef
go back to reference Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., et al. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience & Biobehavioral Reviews, 37(5), 930–949.CrossRef Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., et al. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience & Biobehavioral Reviews, 37(5), 930–949.CrossRef
go back to reference Iachini, T. (2011). Mental imagery and embodied cognition: A multimodal approach. Journal of Mental Imagery, 35(3–4), 1–66. Iachini, T. (2011). Mental imagery and embodied cognition: A multimodal approach. Journal of Mental Imagery, 35(3–4), 1–66.
go back to reference Imamizu, H., & Kawato, M. (2009). Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions. Psychological Research Psychologische Forschung, 73(4), 527–544.PubMedCrossRef Imamizu, H., & Kawato, M. (2009). Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions. Psychological Research Psychologische Forschung, 73(4), 527–544.PubMedCrossRef
go back to reference Ionta, S., Fourkas, A. D., Fiorio, M., & Aglioti, S. M. (2007). The influence of hands posture on mental rotation of hands and feet. Experimental Brain Research, 183(1), 1–7.PubMedCrossRef Ionta, S., Fourkas, A. D., Fiorio, M., & Aglioti, S. M. (2007). The influence of hands posture on mental rotation of hands and feet. Experimental Brain Research, 183(1), 1–7.PubMedCrossRef
go back to reference Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., & Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of Physical Medicine and Rehabilitation, 82(8), 1133–1141.PubMedCrossRef Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., & Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of Physical Medicine and Rehabilitation, 82(8), 1133–1141.PubMedCrossRef
go back to reference Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(02), 187–202.CrossRef Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(02), 187–202.CrossRef
go back to reference Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14(1), S103–S109.PubMedCrossRef Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14(1), S103–S109.PubMedCrossRef
go back to reference Jeannerod, M. (2006). Motor cognition: What actions tell the self (Vol. 42). Oxford: Oxford University Press.CrossRef Jeannerod, M. (2006). Motor cognition: What actions tell the self (Vol. 42). Oxford: Oxford University Press.CrossRef
go back to reference Jiang, D., Edwards, M. G., Mullins, P., & Callow, N. (2015). The neural substrates for the different modalities of movement imagery. Brain and Cognition, 97, 22–31.PubMedCrossRef Jiang, D., Edwards, M. G., Mullins, P., & Callow, N. (2015). The neural substrates for the different modalities of movement imagery. Brain and Cognition, 97, 22–31.PubMedCrossRef
go back to reference Kilteni, K., Andersson, B. J., Houborg, C., & Ehrsson, H. H. (2018). Motor imagery involves predicting the sensory consequences of the imagined movement. Nature Communications, 9(1), 1617.PubMedPubMedCentralCrossRef Kilteni, K., Andersson, B. J., Houborg, C., & Ehrsson, H. H. (2018). Motor imagery involves predicting the sensory consequences of the imagined movement. Nature Communications, 9(1), 1617.PubMedPubMedCentralCrossRef
go back to reference Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: The influence of posture and perspective. Experimental Brain Research, 194(2), 233–243.PubMedCrossRef Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: The influence of posture and perspective. Experimental Brain Research, 194(2), 233–243.PubMedCrossRef
go back to reference Malouin, F., Richards, C. L., & Durand, A. (2010). Normal aging and motor imagery vividness: Implications for mental practice training in rehabilitation. Archives of Physical Medicine and Rehabilitation, 91(7), 1122–1127.PubMedCrossRef Malouin, F., Richards, C. L., & Durand, A. (2010). Normal aging and motor imagery vividness: Implications for mental practice training in rehabilitation. Archives of Physical Medicine and Rehabilitation, 91(7), 1122–1127.PubMedCrossRef
go back to reference Malouin, F., Richards, C. L., Durand, A., & Doyon, J. (2008). Clinical assessment of motor imagery after stroke. Neurorehabilitation and Neural Repair, 22(4), 330–340.PubMedCrossRef Malouin, F., Richards, C. L., Durand, A., & Doyon, J. (2008). Clinical assessment of motor imagery after stroke. Neurorehabilitation and Neural Repair, 22(4), 330–340.PubMedCrossRef
go back to reference Malouin, F., Richards, C. L., Jackson, P. L., Lafleur, M. F., Durand, A., & Doyon, J. (2007). The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: A reliability and construct validity study. Journal of Neurologic Physical Therapy, 31(1), 20–29.PubMedCrossRef Malouin, F., Richards, C. L., Jackson, P. L., Lafleur, M. F., Durand, A., & Doyon, J. (2007). The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: A reliability and construct validity study. Journal of Neurologic Physical Therapy, 31(1), 20–29.PubMedCrossRef
go back to reference Maravita, A., Spence, C., & Driver, J. (2003). Multisensory integration and the body schema: Close to hand and within reach. Current Biology, 13(13), R531–R539.PubMedCrossRef Maravita, A., Spence, C., & Driver, J. (2003). Multisensory integration and the body schema: Close to hand and within reach. Current Biology, 13(13), R531–R539.PubMedCrossRef
go back to reference Meugnot, A., Agbangla, N. F., Almecija, Y., & Toussaint, L. (2015). Motor imagery practice may compensate for the slowdown of sensorimotor processes induced by short-term upper-limb immobilization. Psychological Research Psychologische Forschung, 79(3), 489–499.PubMedCrossRef Meugnot, A., Agbangla, N. F., Almecija, Y., & Toussaint, L. (2015). Motor imagery practice may compensate for the slowdown of sensorimotor processes induced by short-term upper-limb immobilization. Psychological Research Psychologische Forschung, 79(3), 489–499.PubMedCrossRef
go back to reference Mizuguchi, N., Nakata, H., Uchida, Y., & Kanosue, K. (2012). Motor imagery and sport performance. The Journal of Physical Fitness and Sports Medicine, 1(1), 103–111.CrossRef Mizuguchi, N., Nakata, H., Uchida, Y., & Kanosue, K. (2012). Motor imagery and sport performance. The Journal of Physical Fitness and Sports Medicine, 1(1), 103–111.CrossRef
go back to reference Mulder, T., Zijlstra, S., Zijlstra, W., & Hochstenbach, J. (2004). The role of motor imagery in learning a totally novel movement. Experimental Brain Research, 154(2), 211–217.PubMedCrossRef Mulder, T., Zijlstra, S., Zijlstra, W., & Hochstenbach, J. (2004). The role of motor imagery in learning a totally novel movement. Experimental Brain Research, 154(2), 211–217.PubMedCrossRef
go back to reference Munzert, J., & Lorey, B. (2013). Motor and visual imagery in sports. In S. Lacey & R. Lawson (Eds.), Multisensory imagery (pp. 319–341). New York: Springer.CrossRef Munzert, J., & Lorey, B. (2013). Motor and visual imagery in sports. In S. Lacey & R. Lawson (Eds.), Multisensory imagery (pp. 319–341). New York: Springer.CrossRef
go back to reference Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306–326.PubMedCrossRef Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306–326.PubMedCrossRef
go back to reference Naito, E., Kochiyama, T., Kitada, R., Nakamura, S., Matsumura, M., Yonekura, Y., et al. (2002). Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. The Journal of Neurosciences, 22(9), 3683–3691. Naito, E., Kochiyama, T., Kitada, R., Nakamura, S., Matsumura, M., Yonekura, Y., et al. (2002). Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. The Journal of Neurosciences, 22(9), 3683–3691.
go back to reference Papaxanthis, C., Pozzo, T., Skoura, X., & Schieppati, M. (2002). Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task. Behavioural Brain Research, 134(1–2), 209–215.PubMedCrossRef Papaxanthis, C., Pozzo, T., Skoura, X., & Schieppati, M. (2002). Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task. Behavioural Brain Research, 134(1–2), 209–215.PubMedCrossRef
go back to reference Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 709–730.PubMed Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 709–730.PubMed
go back to reference Pezzulo, G. (2011). Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind & Language, 26(1), 78–114.CrossRef Pezzulo, G. (2011). Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind & Language, 26(1), 78–114.CrossRef
go back to reference Puyjarinet, F. (2019). Intérêts de la pratique de l’imagerie motrice dans la rééducation de l’écriture des enfants dysgraphiques. Approche Neuropsychologique des Apprentissages chez l’ Enfant (A.N.A.E.), 31(159), 1–11. Puyjarinet, F. (2019). Intérêts de la pratique de l’imagerie motrice dans la rééducation de l’écriture des enfants dysgraphiques. Approche Neuropsychologique des Apprentissages chez l’ Enfant (A.N.A.E.), 31(159), 1–11.
go back to reference Ridderinkhof, K. R., & Brass, M. (2015). How kinesthetic motor imagery works: A predictive-processing theory of visualization in sports and motor expertise. Journal of Physiology-Paris, 109(1–3), 53–63.CrossRefPubMed Ridderinkhof, K. R., & Brass, M. (2015). How kinesthetic motor imagery works: A predictive-processing theory of visualization in sports and motor expertise. Journal of Physiology-Paris, 109(1–3), 53–63.CrossRefPubMed
go back to reference Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2015). Assessing motor imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery. Brain Research, 1597, 196–209.PubMedCrossRef Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2015). Assessing motor imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery. Brain Research, 1597, 196–209.PubMedCrossRef
go back to reference Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2012). The influence of body configuration on motor imagery of walking in younger and older adults. Neuroscience, 222, 49–57.PubMedCrossRef Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2012). The influence of body configuration on motor imagery of walking in younger and older adults. Neuroscience, 222, 49–57.PubMedCrossRef
go back to reference Sainburg, R. L., Poizner, H., & Ghez, C. (1993). Loss of proprioception produces deficits in interjoint coordination. Journal of Neurophysiology, 70(5), 2136–2147.PubMedCrossRef Sainburg, R. L., Poizner, H., & Ghez, C. (1993). Loss of proprioception produces deficits in interjoint coordination. Journal of Neurophysiology, 70(5), 2136–2147.PubMedCrossRef
go back to reference Sakamoto, M., Muraoka, T., Mizuguchi, N., & Kanosue, K. (2009). Combining observation and imagery of an action enhances human corticospinal excitability. Neuroscience Research, 65(1), 23–27.PubMedCrossRef Sakamoto, M., Muraoka, T., Mizuguchi, N., & Kanosue, K. (2009). Combining observation and imagery of an action enhances human corticospinal excitability. Neuroscience Research, 65(1), 23–27.PubMedCrossRef
go back to reference Schuster, C., Hilfiker, R., Amft, O., Scheidhauer, A., Andrews, B., Butler, J., et al. (2011). Best practice for motor imagery: A systematic literature review on motor imagery training elements in five different disciplines. BMC Medicine, 9(1), 75.PubMedPubMedCentralCrossRef Schuster, C., Hilfiker, R., Amft, O., Scheidhauer, A., Andrews, B., Butler, J., et al. (2011). Best practice for motor imagery: A systematic literature review on motor imagery training elements in five different disciplines. BMC Medicine, 9(1), 75.PubMedPubMedCentralCrossRef
go back to reference Shenton, J. T., Schwoebel, J., & Coslett, H. B. (2004). Mental motor imagery and the body schema: Evidence for proprioceptive dominance. Neuroscience Letters, 370(1), 19–24.PubMedCrossRef Shenton, J. T., Schwoebel, J., & Coslett, H. B. (2004). Mental motor imagery and the body schema: Evidence for proprioceptive dominance. Neuroscience Letters, 370(1), 19–24.PubMedCrossRef
go back to reference Sirigu, A., & Duhamel, J. R. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience, 13(7), 910–919.PubMedCrossRef Sirigu, A., & Duhamel, J. R. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience, 13(7), 910–919.PubMedCrossRef
go back to reference Skoura, X., Vinter, A., & Papaxanthis, C. (2009). Mentally simulated motor actions in children. Developmental Neuropsychology, 34(3), 356–367.PubMedCrossRef Skoura, X., Vinter, A., & Papaxanthis, C. (2009). Mentally simulated motor actions in children. Developmental Neuropsychology, 34(3), 356–367.PubMedCrossRef
go back to reference Smyth, M. M., & Silvers, G. (1987). Functions of vision in the control of handwriting. Acta Psychologica, 65(1), 47–64.CrossRef Smyth, M. M., & Silvers, G. (1987). Functions of vision in the control of handwriting. Acta Psychologica, 65(1), 47–64.CrossRef
go back to reference Stevens, J. A. (2005). Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition, 95(3), 329–350.PubMedCrossRef Stevens, J. A. (2005). Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition, 95(3), 329–350.PubMedCrossRef
go back to reference Tamada, T. (1995). Effects of delayed visual feedback on handwriting. Japanese Psychological Research, 37(2), 103–109.CrossRef Tamada, T. (1995). Effects of delayed visual feedback on handwriting. Japanese Psychological Research, 37(2), 103–109.CrossRef
go back to reference Van Doorn, R. R. A., & Keuss, P. J. G. (1992). The role of vision in the temporal and spatial control of handwriting. Acta Psychologica, 81(3), 26–286. Van Doorn, R. R. A., & Keuss, P. J. G. (1992). The role of vision in the temporal and spatial control of handwriting. Acta Psychologica, 81(3), 26–286.
go back to reference Vargas, C. D., Olivier, E., Craighero, L., Fadiga, L., Duhamel, J. R., & Sirigu, A. (2004). The influence of hand posture on corticospinal excitability during motor imagery: A transcranial magnetic stimulation study. Cerebral Cortex, 14(1), 1200–1206.PubMedCrossRef Vargas, C. D., Olivier, E., Craighero, L., Fadiga, L., Duhamel, J. R., & Sirigu, A. (2004). The influence of hand posture on corticospinal excitability during motor imagery: A transcranial magnetic stimulation study. Cerebral Cortex, 14(1), 1200–1206.PubMedCrossRef
go back to reference Toussaint, L., & Blandin, Y. (2010). On the role of imagery modalities on motor learning. Journal of Sports Sciences, 28(5), 497–504.PubMedCrossRef Toussaint, L., & Blandin, Y. (2010). On the role of imagery modalities on motor learning. Journal of Sports Sciences, 28(5), 497–504.PubMedCrossRef
go back to reference Williams, S. E., Guillot, A., Di Rienzo, F., & Cumming, J. (2015). Comparing self-report and mental chronometry measures of motor imagery ability. European Journal of Sport Science, 15(8), 703–711.PubMedCrossRef Williams, S. E., Guillot, A., Di Rienzo, F., & Cumming, J. (2015). Comparing self-report and mental chronometry measures of motor imagery ability. European Journal of Sport Science, 15(8), 703–711.PubMedCrossRef
go back to reference Zhang, T., Liu, T., Li, F., Li, M., Liu, D., Zhang, R., et al. (2016). Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network. NeuroImage, 134, 475–485.PubMedCrossRef Zhang, T., Liu, T., Li, F., Li, M., Liu, D., Zhang, R., et al. (2016). Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network. NeuroImage, 134, 475–485.PubMedCrossRef
Metagegevens
Titel
Imagining handwriting movements in a usual or unusual position: effect of posture congruency on visual and kinesthetic motor imagery
Auteurs
Jessica Guilbert
Jonathan Fernandez
Michèle Molina
Marie-France Morin
Denis Alamargot
Publicatiedatum
02-08-2020
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01399-w

Andere artikelen Uitgave 6/2021

Psychological Research 6/2021 Naar de uitgave