Skip to main content
Log in

Action prediction in the cerebellum and in the parietal lobe

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The ability of the central nervous system to predict motor behaviour is a central issue in experimental and computational studies of motor control. The parietal cortex and the cerebellum have been proposed to play a role in sensorimotor prediction. Here we discuss the roles of these two brain regions in various aspects of sensorimotor prediction according to results of recent empirical studies using a variety of techniques including electrophysiology, psychophysics, functional neuroimaging and the investigation of neurological patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson RA, Buneo AC (2002) Intentional maps in posterior parietal cortex. Ann Rev Neurosci 25:189–220

    Article  CAS  PubMed  Google Scholar 

  • Andersson G, Armstrong DM (1985) Climbing fibre input to b zone Purkinje cells during locomotor perturbation in the cat. Neurosci Lett Suppl 22:S27

    Google Scholar 

  • Babin-Ratté S, Sirigu A, Gilles M, Wing A (1999) Impaired anticipatory finger grip-force adjustments in a case of cerebellar degeneration. Exp Brain Res 128:81–85

    PubMed  Google Scholar 

  • Blakemore S-J, Goodbody SJ, Wolpert DW (1998a) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18:7511–7518

    CAS  PubMed  Google Scholar 

  • Blakemore S-J, Wolpert DM, Frith CD (1998b) Central cancellation of self-produced tickle sensation. Nat Neurosci 1:635–640

    CAS  PubMed  Google Scholar 

  • Blakemore S-J, Frith CD, Wolpert DW (1999) Spatiotemporal prediction modulates the perception of self-produced stimuli. J Cogn Neurosci 11:551–559

    Article  CAS  PubMed  Google Scholar 

  • Blakemore S-J, Frith CD, Wolpert DW (2001) The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12:1879–1885

    CAS  PubMed  Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404

    Article  CAS  PubMed  Google Scholar 

  • Chaminade T, Decety J (2002) Leader or follower? Involvement of the inferior parietal lobule in agency. Neuroreport 13:1975–1978

    PubMed  Google Scholar 

  • Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291

    CAS  PubMed  Google Scholar 

  • Danckert J, Ferber S, Doherty T, Steinmetz H, Nicolle D, Goodale MA (2002) Selective, non-lateralized impairment of motor imagery following right parietal damage. Neurocase 8:194–204

    PubMed  Google Scholar 

  • Daprati E, Franck N, Georgieff N, Proust J, Pacherie E, Dalery J, Jeannerod M (1997) Looking for the agent: an investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition 65:71–86

    Article  CAS  PubMed  Google Scholar 

  • Decety J, Jeannerod M (1995) Mentally simulated movements in virtual reality: does Fitts's law hold in motor imagery? Behav Brain Res 14:127–134

    Article  Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994). Mapping motor representations with positron emission tomography. Nature 371:600–602

    Google Scholar 

  • Decety J, Chaminade T, Grezes J, Meltzoff AN (2002) A PET exploration of the neural mechanisms involved in reciprocal imitation. Neuroimage 15:265–272

    CAS  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    PubMed  Google Scholar 

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2:563–567

    CAS  PubMed  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 3:90–92

    Google Scholar 

  • Espinoza E, Smith AM (1990) Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights. J Neurophys 64:698–714

    CAS  PubMed  Google Scholar 

  • Farrer C, Frith CD (2002) Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15:596–603

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    CAS  PubMed  Google Scholar 

  • Frith CD, Blakemore S-J, Wolpert DM (2000) Abnormalities in the awareness and control of action. Phil Trans R Soc Lond Biol Sci 355:1771–1778

    CAS  Google Scholar 

  • Gellman R, Gibson AR, Houk JC (1985) Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophys 54:40–60

    CAS  Google Scholar 

  • Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1094

    Article  CAS  PubMed  Google Scholar 

  • Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelberg D (2000) Patterns of regional brain activation associated with different forms of motor learning. Brain Res 871:127–145

    Article  CAS  PubMed  Google Scholar 

  • Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 23:613–617

    CAS  PubMed  Google Scholar 

  • Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112:103–111

    CAS  PubMed  Google Scholar 

  • Grèzes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12:1–19

    Article  PubMed  Google Scholar 

  • Helmholtz H von (1867) Handbuch der Physiologischen Optik, 1st edn. Voss, Hamburg

  • Holst E von, Mittelstaedt H (1950) Das Reafferenzprincip (Wechselwirkungen zwischen Zentralnervensystem und Periferie). Naturwissenschaft 37:464–476

    Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Pütz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Google Scholar 

  • Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7:162–176

    CAS  PubMed  Google Scholar 

  • Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9:735–739

    CAS  PubMed  Google Scholar 

  • Jeannerod M, Michel F, Prablanc C (1984) The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain 107:899–920

    PubMed  Google Scholar 

  • Johansson RS, Cole KJ (1992) Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol 2:815–823

    CAS  PubMed  Google Scholar 

  • Johansson RS, Riso R, Hager C, Backstrom L (1992a) Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Exp Brain Res 89:181–191

    CAS  PubMed  Google Scholar 

  • Johansson RS, Hager C, Riso R (1992b) Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate. Exp Brain Res 89:192–203

    CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    CAS  PubMed  Google Scholar 

  • Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68:95–103

    CAS  PubMed  Google Scholar 

  • Marr AD (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    CAS  PubMed  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor? J Mot Behav 25:203–216

    PubMed  Google Scholar 

  • Muller F, Dichgans J (1994a) Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Exp Brain Res 101:485–492

    PubMed  Google Scholar 

  • Muller F, Dichgans J (1994b) Impairments of precision grip in two patients with acute unilateral cerebellar lesions: a simple parametric test for clinical use. Neuropsychologia 32:265–269

    PubMed  Google Scholar 

  • Ojakangas CL, Ebner TJ (1992) Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. J Neurophys 68:2222–2236

    CAS  PubMed  Google Scholar 

  • Oscarsson O (1980) Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, DeMontigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven, New York, pp 279–289

  • Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y (2000) An 'automatic pilot' for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3:729–736

    CAS  PubMed  Google Scholar 

  • Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci 4:546–550

    CAS  PubMed  Google Scholar 

  • Seitz RJ, Canavan AG, Yaguez L, Herzog H, Tellmann L, Knorr U, Huang Y, Homberg V (1994) Successive roles of the cerebellum and premotor cortices in trajectorial learning. Neuroreport 5:2541–2554

    CAS  PubMed  Google Scholar 

  • Serrien DJ, Wiesendanger M (1999) Role of the cerebellum in tuning anticipatory and reactive grip force responses. J Cogn Neurosci 11:672–681

    CAS  PubMed  Google Scholar 

  • Simpson JL, Wylie DR, De Zeeuw CI (1995) On climbing fiber signals and their consequence(s) Behav Brain Sci 19:368–383

    Google Scholar 

  • Sirigu A, Cohen L, Duhamel JR, Pillon B, Dubois B, Agid Y, Pierrot-Deseilligny C (1995) Congruent unilateral impairments for real and imagined hand movements. Neuroreport 6:997–1001

    CAS  PubMed  Google Scholar 

  • Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, Agid Y (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–1568

    CAS  PubMed  Google Scholar 

  • Sirigu A, Daprati E, Pradat-Diehl P, Franck N, Jeannerod M (1999) Perception of self-generated movement following left parietal lesion. Brain 122:1867–1874

    Article  PubMed  Google Scholar 

  • Smith AM, Dugas C, Fortier P, Kalaska J, Picard N (1993) Comparing cerebellar and motor cortical activity in reaching and grasping. Can J Neurol Sci 20:S53–61

    PubMed  Google Scholar 

  • Tamada T, Miyauchi S, Imamizu H, Yoshioka T, Kawato M (1999) Activation of the cerebellum in grip force and load force coordination. Neuroimage 6:s492

    Google Scholar 

  • Tracy JI, Faro SS, Mohammed F, Pinus A, Christensen H, Burkland D (2001) A comparison of 'Early' and 'Late' stage brain activation during brief practice of a simple motor task. Brain Res Cogn Brain Res 10:303–316

    CAS  PubMed  Google Scholar 

  • Weiskrantz L, Elliot J, Darlington C (1971) Preliminary observations of tickling oneself. Nature 230:598–599

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11: R729–732

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Networks 11:1317–1329

    Article  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998a) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  Google Scholar 

  • Wolpert DM, Goodbody SJ, Husain M (1998b) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1:529–533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S-J.B is supported by the Wellcome Trust UK. AS is supported by CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Sirigu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blakemore, SJ., Sirigu, A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153, 239–245 (2003). https://doi.org/10.1007/s00221-003-1597-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1597-z

Keywords

Navigation