Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2016

08-08-2015 | Original Article

The processing of visual and auditory information for reaching movements

Auteurs: Cheryl M. Glazebrook, Timothy N. Welsh, Luc Tremblay

Gepubliceerd in: Psychological Research | Uitgave 5/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Presenting target and non-target information in different modalities influences target localization if the non-target is within the spatiotemporal limits of perceptual integration. When using auditory and visual stimuli, the influence of a visual non-target on auditory target localization is greater than the reverse. It is not known, however, whether or how such perceptual effects extend to goal-directed behaviours. To gain insight into how audio-visual stimuli are integrated for motor tasks, the kinematics of reaching movements towards visual or auditory targets with or without a non-target in the other modality were examined. When present, the simultaneously presented non-target could be spatially coincident, to the left, or to the right of the target. Results revealed that auditory non-targets did not influence reaching trajectories towards a visual target, whereas visual non-targets influenced trajectories towards an auditory target. Interestingly, the biases induced by visual non-targets were present early in the trajectory and persisted until movement end. Subsequent experimentation indicated that the magnitude of the biases was equivalent whether participants performed a perceptual or motor task, whereas variability was greater for the motor versus the perceptual tasks. We propose that visually induced trajectory biases were driven by the perceived mislocation of the auditory target, which in turn affected both the movement plan and subsequent control of the movement. Such findings provide further evidence of the dominant role visual information processing plays in encoding spatial locations as well as planning and executing reaching action, even when reaching towards auditory targets.
Literatuur
go back to reference Bertelson, P., & Radeau, M. (1981). Crossmodal bias and perceptual fusion with auditory-visual spatial discordance. Perception and Psychophysics, 29, 578–584.CrossRefPubMed Bertelson, P., & Radeau, M. (1981). Crossmodal bias and perceptual fusion with auditory-visual spatial discordance. Perception and Psychophysics, 29, 578–584.CrossRefPubMed
go back to reference Burr, D., & Alais, D. (2006). Combining visual and auditory information. Progress in Brain Research, 155, 243–258.CrossRefPubMed Burr, D., & Alais, D. (2006). Combining visual and auditory information. Progress in Brain Research, 155, 243–258.CrossRefPubMed
go back to reference Calvert, G. A., Spence, C., & Stein, B. E. (2004). The Handbook of Multisensory Processes. Cambridge: MIT Press. Calvert, G. A., Spence, C., & Stein, B. E. (2004). The Handbook of Multisensory Processes. Cambridge: MIT Press.
go back to reference Cheng, D. T., Luis, M., & Tremblay, L. (2008). Randomizing visual feedback in manual aiming: reminiscence of the previous trial condition and prior knowledge of feedback availability. Experimental Brain Research, 189, 403–410. Cheng, D. T., Luis, M., & Tremblay, L. (2008). Randomizing visual feedback in manual aiming: reminiscence of the previous trial condition and prior knowledge of feedback availability. Experimental Brain Research, 189, 403–410.
go back to reference Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: a time-window-of-integration model. Journal of Cognitive Neuroscience, 16, 1000–1009.CrossRefPubMed Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: a time-window-of-integration model. Journal of Cognitive Neuroscience, 16, 1000–1009.CrossRefPubMed
go back to reference Colonius, H., & Diederich, A. (2010). The optimal time window of visual-auditory integration: a reaction time analysis. Frontiers in Integrative Neuroscience, 4(11), 1–8. Colonius, H., & Diederich, A. (2010). The optimal time window of visual-auditory integration: a reaction time analysis. Frontiers in Integrative Neuroscience, 4(11), 1–8.
go back to reference Desanghere, L., & Marotta, J. J. (2008). The specificity of learned associations in visuomotor and perceptual processing. Experimental Brain Research, 187, 595–601. Desanghere, L., & Marotta, J. J. (2008). The specificity of learned associations in visuomotor and perceptual processing. Experimental Brain Research187, 595–601.
go back to reference Diederich, A., & Colonius, H. (1987). Intersensory facilitation in the motor component? A reaction time analysis. Psychological Research, 49, 23–29.CrossRef Diederich, A., & Colonius, H. (1987). Intersensory facilitation in the motor component? A reaction time analysis. Psychological Research, 49, 23–29.CrossRef
go back to reference Diederich, A., & Colonius, H. (2004). Modelling the time course of multisensory interaction in manual and saccadic responses. In G. Calvert, C. Spence, & B. E. Stein (Eds.), Handbook of Multisensory Processes (pp. 395–408). Cambridge: MIT Press. Diederich, A., & Colonius, H. (2004). Modelling the time course of multisensory interaction in manual and saccadic responses. In G. Calvert, C. Spence, & B. E. Stein (Eds.), Handbook of Multisensory Processes (pp. 395–408). Cambridge: MIT Press.
go back to reference Diederich, A., & Colonius, H. (2008a). Crossmodal interaction in saccadic reaction time: separating multisensory from warning effects in the time window of integration model. Experimental Brain Research, 186, 1–22.CrossRefPubMed Diederich, A., & Colonius, H. (2008a). Crossmodal interaction in saccadic reaction time: separating multisensory from warning effects in the time window of integration model. Experimental Brain Research, 186, 1–22.CrossRefPubMed
go back to reference Diederich, A., & Colonius, H. (2008b). When a high-intensity “distractor” in better than a low-intensity one: modeling the effect of an auditory or tactile nontarget stimulus on visual saccadic reaction time. Brain Research, 1242, 219–230.CrossRefPubMed Diederich, A., & Colonius, H. (2008b). When a high-intensity “distractor” in better than a low-intensity one: modeling the effect of an auditory or tactile nontarget stimulus on visual saccadic reaction time. Brain Research, 1242, 219–230.CrossRefPubMed
go back to reference Diederich, A., & Colonius, H. (2015). The time window of multisensory integration: relating reaction times and judgements of temporal order. Psychological Review, 122, 232–241.CrossRefPubMed Diederich, A., & Colonius, H. (2015). The time window of multisensory integration: relating reaction times and judgements of temporal order. Psychological Review, 122, 232–241.CrossRefPubMed
go back to reference Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(429), 433. Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(429), 433.
go back to reference Frens, M. A., Van Opstal, A. J., & Van der Willigen, R. F. (1995). Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Perception and Psychophysics, 57, 802–816.CrossRefPubMed Frens, M. A., Van Opstal, A. J., & Van der Willigen, R. F. (1995). Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Perception and Psychophysics, 57, 802–816.CrossRefPubMed
go back to reference Frissen, I., Vroomen, J., de Gelder, B., & Bertelson, P. (2005). The aftereffect of ventriloquism: generalization across sound-frequencies. Acta Psychologica, 118, 93–100.CrossRefPubMed Frissen, I., Vroomen, J., de Gelder, B., & Bertelson, P. (2005). The aftereffect of ventriloquism: generalization across sound-frequencies. Acta Psychologica, 118, 93–100.CrossRefPubMed
go back to reference Gielen, S. C. A., Schimdt, R. A., & Van Den Heuvel, P. J. M. (1983). On the nature of intersensory facilitation of reaction time. Perception and Psychophysics, 34, 161–168.CrossRefPubMed Gielen, S. C. A., Schimdt, R. A., & Van Den Heuvel, P. J. M. (1983). On the nature of intersensory facilitation of reaction time. Perception and Psychophysics, 34, 161–168.CrossRefPubMed
go back to reference Glazebrook, C. M., Dhillon, V. P., Keetch, K. M., Lyons, J., Amazeen, E., Weeks, D. J., & Elliott, D. (2005). Perception-action and the Muller-Lyer illusion: amplitude or endpoint bias? Experimental Brain Research, 160, 71–78. Glazebrook, C. M., Dhillon, V. P., Keetch, K. M., Lyons, J., Amazeen, E., Weeks, D. J., & Elliott, D. (2005). Perception-action and the Muller-Lyer illusion: amplitude or endpoint bias? Experimental Brain Research, 160, 71–78.
go back to reference Glover, S. R., & Dixon, P. (2001). Dynamic illusion effects in a reaching task: evidence for separate visual representations in the planning and control of reaching. Journal of Experimental Psychology: Human Perception and Performance, 27, 560–572. Glover, S. R., & Dixon, P. (2001). Dynamic illusion effects in a reaching task: evidence for separate visual representations in the planning and control of reaching. Journal of Experimental Psychology: Human Perception and Performance27, 560–572.
go back to reference Glover, S., & Dixon, P. (2002). Dynamic effects of the Ebbinghaus illusion in grasping: support for a planning/control model of action. Perception and Psychophysics, 64, 266–278.CrossRefPubMed Glover, S., & Dixon, P. (2002). Dynamic effects of the Ebbinghaus illusion in grasping: support for a planning/control model of action. Perception and Psychophysics, 64, 266–278.CrossRefPubMed
go back to reference Goodale, M. A. (2008). Action without perception in human vision. Cognitive Neuropsychology, 25, 891–919.CrossRefPubMed Goodale, M. A. (2008). Action without perception in human vision. Cognitive Neuropsychology, 25, 891–919.CrossRefPubMed
go back to reference Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154–156.CrossRefPubMed Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154–156.CrossRefPubMed
go back to reference Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9, 281–309.PubMed Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9, 281–309.PubMed
go back to reference Hershenson, M. (1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63, 289–293.CrossRefPubMed Hershenson, M. (1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63, 289–293.CrossRefPubMed
go back to reference Ho, C., & Spence, C. (2005). Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. Journal of Experimental Psychology-Applied, 11, 157–174.CrossRefPubMed Ho, C., & Spence, C. (2005). Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. Journal of Experimental Psychology-Applied, 11, 157–174.CrossRefPubMed
go back to reference Ho, C., & Spence, C. (2009). Using peripersonal warning signals to orient a driver’s gaze. Human Factors: the Journal of the Human Factors and Ergonomics Society, 51, 539–556.CrossRef Ho, C., & Spence, C. (2009). Using peripersonal warning signals to orient a driver’s gaze. Human Factors: the Journal of the Human Factors and Ergonomics Society, 51, 539–556.CrossRef
go back to reference Kagerer, F. A., & Contreras-Vidal, J. L. (2009). Adaptation of sounds localization induced by rotated visual feedback in reaching movements. Experimental Brain Research, 193, 315–321. Kagerer, F. A., & Contreras-Vidal, J. L. (2009). Adaptation of sounds localization induced by rotated visual feedback in reaching movements. Experimental Brain Research, 193, 315–321.
go back to reference Keetels, M., & Vroomen, J. (2011). Sound affects the speed of visual processing. Journal of Experimental Psychology: Human Perception and Performance, 37, 699–708. Keetels, M., & Vroomen, J. (2011). Sound affects the speed of visual processing. Journal of Experimental Psychology: Human Perception and Performance37, 699–708.
go back to reference Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal Inference in Multisensory Perception. PLoS ONE, 2(9), e943. Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal Inference in Multisensory Perception. PLoS ONE, 2(9), e943.
go back to reference Lewald, J., Ehrentstein, W. H., & Guski, R. (2001). Spatio-temporal constraints for auditory-visual integration. Behavioural Brain Research, 121, 69–79.CrossRefPubMed Lewald, J., Ehrentstein, W. H., & Guski, R. (2001). Spatio-temporal constraints for auditory-visual integration. Behavioural Brain Research, 121, 69–79.CrossRefPubMed
go back to reference Lewald, J., & Guski, R. (2003). Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cognitive Brain Research, 16, 468–478.CrossRefPubMed Lewald, J., & Guski, R. (2003). Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cognitive Brain Research, 16, 468–478.CrossRefPubMed
go back to reference Lippert, M., Logothetis, N. K., & Kayser, C. (2007). Improvement of visual contrast detection by a simultaneous sound. Brain Research, 1173, 102–109.CrossRefPubMed Lippert, M., Logothetis, N. K., & Kayser, C. (2007). Improvement of visual contrast detection by a simultaneous sound. Brain Research, 1173, 102–109.CrossRefPubMed
go back to reference Malcom, M. P., Massie, C., & Thaut, M. (2009). Rhythmic Auditory-Motor entrainment improves hemiparetic arm kinematics during reaching movements: a pilot study. Topics in Stroke Rehabilitation, 16(1), 69–79.CrossRef Malcom, M. P., Massie, C., & Thaut, M. (2009). Rhythmic Auditory-Motor entrainment improves hemiparetic arm kinematics during reaching movements: a pilot study. Topics in Stroke Rehabilitation, 16(1), 69–79.CrossRef
go back to reference Messier, J., & Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research, 125, 139–152. Messier, J., & Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research125, 139–152.
go back to reference Nowak, D. A., Tisch, S., Hariz, M., Limousin, P., Topka, H., & Rothwell, J. C. (2001). Sensory timing cues improve akinesia of grasping movement in Parkinson’s Disease: a comparison to the effects of subthalamic nucleus stimulation. Movement Disorders, 21, 166–172.CrossRef Nowak, D. A., Tisch, S., Hariz, M., Limousin, P., Topka, H., & Rothwell, J. C. (2001). Sensory timing cues improve akinesia of grasping movement in Parkinson’s Disease: a comparison to the effects of subthalamic nucleus stimulation. Movement Disorders, 21, 166–172.CrossRef
go back to reference Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance : An information-processing account of its origins and significance. Psychological Review, 83, 157–171.CrossRefPubMed Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance : An information-processing account of its origins and significance. Psychological Review, 83, 157–171.CrossRefPubMed
go back to reference Radeau, M., & Bertelson, P. (1987). Auditory-visual interaction and the timing of inputs: Thomas (1941) revisited. Psychological Research, 49, 17–22.CrossRefPubMed Radeau, M., & Bertelson, P. (1987). Auditory-visual interaction and the timing of inputs: Thomas (1941) revisited. Psychological Research, 49, 17–22.CrossRefPubMed
go back to reference Recanzone, G. H. (1998). Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proceedings of the National Academy of Science, 95, 869–875.CrossRef Recanzone, G. H. (1998). Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proceedings of the National Academy of Science, 95, 869–875.CrossRef
go back to reference Ronsse, R., Puttenmans, V., Coxon, J. P., Goble, D. J., Wagemans, J., Wenderoth, N., & Swinnen, S. P. (2011). Motor learning with augmented feedback: modality-dependent behavioural and neural consequences. Cerebral Cortex, 21, 1283–1294.CrossRefPubMed Ronsse, R., Puttenmans, V., Coxon, J. P., Goble, D. J., Wagemans, J., Wenderoth, N., & Swinnen, S. P. (2011). Motor learning with augmented feedback: modality-dependent behavioural and neural consequences. Cerebral Cortex, 21, 1283–1294.CrossRefPubMed
go back to reference Santangelo, V., Van der Lubbe, R. H. J., Belardinelli, M. O., & Postma, A. (2008). Multisensory integration affects ERP components elicited by exogenous cues. Experimental Brian Research, 185, 269–277.CrossRef Santangelo, V., Van der Lubbe, R. H. J., Belardinelli, M. O., & Postma, A. (2008). Multisensory integration affects ERP components elicited by exogenous cues. Experimental Brian Research, 185, 269–277.CrossRef
go back to reference Shams, L., Ma, W. J., & Beierholm, U. (2005). Sound-induced flash illusion as optimal percept. NeuroReport, 16(1923), 1927. Shams, L., Ma, W. J., & Beierholm, U. (2005). Sound-induced flash illusion as optimal percept. NeuroReport, 16(1923), 1927.
go back to reference Slutsky, D. A., & Recanzone, G. H. (2001). Temporal and spatial dependency of the ventriloquism effect. NeuroReport, 12, 7–10.CrossRefPubMed Slutsky, D. A., & Recanzone, G. H. (2001). Temporal and spatial dependency of the ventriloquism effect. NeuroReport, 12, 7–10.CrossRefPubMed
go back to reference Teder-Sälejärvi, W. A., McDonald, J. J., Di Russo, F., & Hillyard, S. A. (2002). An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cognitive Brain Research, 14, 106–114.CrossRefPubMed Teder-Sälejärvi, W. A., McDonald, J. J., Di Russo, F., & Hillyard, S. A. (2002). An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cognitive Brain Research, 14, 106–114.CrossRefPubMed
go back to reference Teichner, W. H. (1954). Recent studies of simple reaction time. Psychological Bulletin, 51, 128–149.CrossRefPubMed Teichner, W. H. (1954). Recent studies of simple reaction time. Psychological Bulletin, 51, 128–149.CrossRefPubMed
go back to reference Thomas, G. J. (1941). Experimental study of the influence of vision on sound localization. Journal of Experimental Psychology, 28, 163–177.CrossRef Thomas, G. J. (1941). Experimental study of the influence of vision on sound localization. Journal of Experimental Psychology, 28, 163–177.CrossRef
go back to reference Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 891–905.PubMed Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 891–905.PubMed
go back to reference Vroomen, J., Bertelson, P., & de Gelder, B. (2001). Directing spatial attention towards the illusory location of a ventriloquized sound. Acta Psychologica, 108, 21–33.CrossRefPubMed Vroomen, J., Bertelson, P., & de Gelder, B. (2001). Directing spatial attention towards the illusory location of a ventriloquized sound. Acta Psychologica, 108, 21–33.CrossRefPubMed
go back to reference Welch, R. B., DuttonHurt, L. D., & Warren, D. H. (1986). Contributions of audition and vision to temporal rate perception. Perception and Psychophysics, 39, 294–300.CrossRefPubMed Welch, R. B., DuttonHurt, L. D., & Warren, D. H. (1986). Contributions of audition and vision to temporal rate perception. Perception and Psychophysics, 39, 294–300.CrossRefPubMed
go back to reference Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667.CrossRefPubMed Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667.CrossRefPubMed
go back to reference Welsh, T. N. (2011). The relationship between attentional capture and deviations in movement trajectories in selective reaching tasks. Acta Psychologica, 137, 300–308.CrossRefPubMed Welsh, T. N. (2011). The relationship between attentional capture and deviations in movement trajectories in selective reaching tasks. Acta Psychologica, 137, 300–308.CrossRefPubMed
go back to reference Welsh, T. N., & Pratt, J. (2008). Actions modulate attentional capture. Quarterly Journal of Experimental Psychology, 61, 968–976.CrossRef Welsh, T. N., & Pratt, J. (2008). Actions modulate attentional capture. Quarterly Journal of Experimental Psychology, 61, 968–976.CrossRef
go back to reference Westwood, D. A., & Goodale, M. A. (2011). Converging evidence for diverging pathways: neuropsychology and psychophysics tell the same story. Vision Research, 51, 804–811.CrossRefPubMed Westwood, D. A., & Goodale, M. A. (2011). Converging evidence for diverging pathways: neuropsychology and psychophysics tell the same story. Vision Research, 51, 804–811.CrossRefPubMed
go back to reference Whitwell, R. L., Milner, A. D., & Goodale, M. A. (2014). The two visual systems hypothesis: new challenges and insights from visual form agnosic patient DF. Frontiers in Neurology, 5, 1–8.CrossRef Whitwell, R. L., Milner, A. D., & Goodale, M. A. (2014). The two visual systems hypothesis: new challenges and insights from visual form agnosic patient DF. Frontiers in Neurology, 5, 1–8.CrossRef
Metagegevens
Titel
The processing of visual and auditory information for reaching movements
Auteurs
Cheryl M. Glazebrook
Timothy N. Welsh
Luc Tremblay
Publicatiedatum
08-08-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2016
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0689-2

Andere artikelen Uitgave 5/2016

Psychological Research 5/2016 Naar de uitgave