Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2016

28-07-2015 | Original Article

Inducing attention not to blink: auditory entrainment improves conscious visual processing

Auteurs: Luca Ronconi, Hannah L. Pincham, Dénes Szűcs, Andrea Facoetti

Gepubliceerd in: Psychological Research | Uitgave 5/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Our ability to allocate attention at different moments in time can sometimes fail to select stimuli occurring in close succession, preventing visual information from reaching awareness. This so-called attentional blink (AB) occurs when the second of two targets (T2) is presented closely after the first (T1) in a rapid serial visual presentation (RSVP). We hypothesized that entrainment to a rhythmic stream of stimuli—before visual targets appear—would reduce the AB. Experiment 1 tested the effect of auditory entrainment by presenting sounds with a regular or irregular interstimulus interval prior to a RSVP where T1 and T2 were separated by three possible lags (1, 3 and 8). Experiment 2 examined visual entrainment by presenting visual stimuli in place of auditory stimuli. Results revealed that irrespective of sensory modality, arrhythmic stimuli preceding the RSVP triggered an alerting effect that improved the T2 identification at lag 1, but impaired the recovery from the AB at lag 8. Importantly, only auditory rhythmic entrainment was effective in reducing the AB at lag 3. Our findings demonstrate that manipulating the pre-stimulus condition can reduce deficits in temporal attention characterizing the human cognitive architecture, suggesting innovative trainings for acquired and neurodevelopmental disorders.
Literatuur
go back to reference Akyürek, E. G., Riddell, P. M., Toffanin, P., & Hommel, B. (2007). Adaptive control of event integration: evidence from event-related potentials. Psychophysiology, 44(3), 383–391.CrossRefPubMed Akyürek, E. G., Riddell, P. M., Toffanin, P., & Hommel, B. (2007). Adaptive control of event integration: evidence from event-related potentials. Psychophysiology, 44(3), 383–391.CrossRefPubMed
go back to reference Akyürek, E. G., Toffanin, P., & Hommel, B. (2008). Adaptive control of event integration. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 569.PubMed Akyürek, E. G., Toffanin, P., & Hommel, B. (2008). Adaptive control of event integration. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 569.PubMed
go back to reference Arend, I., Johnston, S., & Shapiro, K. (2006). Task-irrelevant visual motion and flicker attenuate the attentional blink. Psychonomic Bulletin & Review, 13(4), 600–607.CrossRef Arend, I., Johnston, S., & Shapiro, K. (2006). Task-irrelevant visual motion and flicker attenuate the attentional blink. Psychonomic Bulletin & Review, 13(4), 600–607.CrossRef
go back to reference Arnell, K. M., & Jolicœur, P. (1999). The attentional blink across stimulus modalities: evidence for central processing limitations. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 630–648. Arnell, K. M., & Jolicœur, P. (1999). The attentional blink across stimulus modalities: evidence for central processing limitations. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 630–648.
go back to reference Badcock, N. A., Badcock, D. R., Fletcher, J., & Hogben, J. (2013). The role of preparation time in the attentional blink. Vision Research, 76, 68–76.CrossRefPubMed Badcock, N. A., Badcock, D. R., Fletcher, J., & Hogben, J. (2013). The role of preparation time in the attentional blink. Vision Research, 76, 68–76.CrossRefPubMed
go back to reference Badcock, N. A., & Kidd, J. C. (2015). Temporal variability predicts the magnitude of between-group attentional blink differences in developmental dyslexia: a meta-analysis. PeerJ, 3, e746.CrossRefPubMedPubMedCentral Badcock, N. A., & Kidd, J. C. (2015). Temporal variability predicts the magnitude of between-group attentional blink differences in developmental dyslexia: a meta-analysis. PeerJ, 3, e746.CrossRefPubMedPubMedCentral
go back to reference Besle, J., Schevon, C. A., Mehta, A. D., Lakatos, P., Goodman, R. R., McKhann, G. M., & Schroeder, C. E. (2011). Tuning of the human neocortex to the temporal dynamics of attended events. The Journal of Neuroscience, 31(9), 3176–3185.CrossRefPubMedPubMedCentral Besle, J., Schevon, C. A., Mehta, A. D., Lakatos, P., Goodman, R. R., McKhann, G. M., & Schroeder, C. E. (2011). Tuning of the human neocortex to the temporal dynamics of attended events. The Journal of Neuroscience, 31(9), 3176–3185.CrossRefPubMedPubMedCentral
go back to reference Bolger, D., Trost, W., & Schön, D. (2013). Rhythm implicitly affects temporal orienting of attention across modalities. Acta Psychologica, 142(2), 238–244.CrossRefPubMed Bolger, D., Trost, W., & Schön, D. (2013). Rhythm implicitly affects temporal orienting of attention across modalities. Acta Psychologica, 142(2), 238–244.CrossRefPubMed
go back to reference Buchholz, J., & Aimola Davies, A. (2007). Attentional blink deficits observed in dyslexia depend on task demands. Vision Research, 47(10), 1292–1302.CrossRefPubMed Buchholz, J., & Aimola Davies, A. (2007). Attentional blink deficits observed in dyslexia depend on task demands. Vision Research, 47(10), 1292–1302.CrossRefPubMed
go back to reference Calderone, D. J., Lakatos, P., Butler, P. D., & Castellanos, F. X. (2014). Entrainment of neural oscillations as a modifiable substrate of attention. Trends in Cognitive Sciences, 18(6), 300–309.CrossRefPubMedPubMedCentral Calderone, D. J., Lakatos, P., Butler, P. D., & Castellanos, F. X. (2014). Entrainment of neural oscillations as a modifiable substrate of attention. Trends in Cognitive Sciences, 18(6), 300–309.CrossRefPubMedPubMedCentral
go back to reference Carr, K. W., White-Schwoch, T., Tierney, A. T., Strait, D. L., & Kraus, N. (2014). Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proceedings of the National Academy of Sciences, 111(40), 14559–14564.CrossRef Carr, K. W., White-Schwoch, T., Tierney, A. T., Strait, D. L., & Kraus, N. (2014). Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proceedings of the National Academy of Sciences, 111(40), 14559–14564.CrossRef
go back to reference Cohen, M. A., Cavanagh, P., Chun, M. M., & Nakayama, K. (2012). The attentional requirements of consciousness. Trends in Cognitive Sciences, 16(8), 411–417.CrossRefPubMed Cohen, M. A., Cavanagh, P., Chun, M. M., & Nakayama, K. (2012). The attentional requirements of consciousness. Trends in Cognitive Sciences, 16(8), 411–417.CrossRefPubMed
go back to reference Driver, J., & Spence, C. (1998). Attention and the crossmodal construction of space. Trends in Cognitive Sciences, 2(7), 254–262.CrossRefPubMed Driver, J., & Spence, C. (1998). Attention and the crossmodal construction of space. Trends in Cognitive Sciences, 2(7), 254–262.CrossRefPubMed
go back to reference Dux, P. E., & Marois, R. (2009). The attentional blink: a review of data and theory. Attention, Perception, & Psychophysics, 71(8), 1683–1700.CrossRef Dux, P. E., & Marois, R. (2009). The attentional blink: a review of data and theory. Attention, Perception, & Psychophysics, 71(8), 1683–1700.CrossRef
go back to reference Enns, J. T., & Di Lollo, V. (2000). What’s new in visual masking? Trends in Cognitive Sciences, 4(9), 345–352.CrossRefPubMed Enns, J. T., & Di Lollo, V. (2000). What’s new in visual masking? Trends in Cognitive Sciences, 4(9), 345–352.CrossRefPubMed
go back to reference Facoetti, A., Ruffino, M., Peru, A., Paganoni, P., & Chelazzi, L. (2008). Sluggish engagement and disengagement of non-spatial attention in dyslexic children. Cortex, 44(9), 1221–1233.CrossRefPubMed Facoetti, A., Ruffino, M., Peru, A., Paganoni, P., & Chelazzi, L. (2008). Sluggish engagement and disengagement of non-spatial attention in dyslexic children. Cortex, 44(9), 1221–1233.CrossRefPubMed
go back to reference Fiebelkorn, I. C., Foxe, J. J., Butler, J. S., Mercier, M. R., Snyder, A. C., & Molholm, S. (2011). Ready, set, reset: stimulus-locked periodicity in behavioral performance demonstrates the consequences of cross-sensory phase reset. The Journal of Neuroscience, 31(27), 9971–9981.CrossRefPubMedPubMedCentral Fiebelkorn, I. C., Foxe, J. J., Butler, J. S., Mercier, M. R., Snyder, A. C., & Molholm, S. (2011). Ready, set, reset: stimulus-locked periodicity in behavioral performance demonstrates the consequences of cross-sensory phase reset. The Journal of Neuroscience, 31(27), 9971–9981.CrossRefPubMedPubMedCentral
go back to reference Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.CrossRefPubMed Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.CrossRefPubMed
go back to reference Geerligs, L., & Akyürek, E. G. (2012). Temporal integration depends on increased prestimulus beta band power. Psychophysiology, 49(11), 1632–1635.CrossRef Geerligs, L., & Akyürek, E. G. (2012). Temporal integration depends on increased prestimulus beta band power. Psychophysiology, 49(11), 1632–1635.CrossRef
go back to reference Geiger, G., Cattaneo, C., Galli, R., Pozzoli, U., Lorusso, M. L., Facoetti, A., & Molteni, M. (2008). Wide and diffuse perceptual modes characterize dyslexics in vision and audition. Perception, 37(11), 1745–1764.CrossRefPubMed Geiger, G., Cattaneo, C., Galli, R., Pozzoli, U., Lorusso, M. L., Facoetti, A., & Molteni, M. (2008). Wide and diffuse perceptual modes characterize dyslexics in vision and audition. Perception, 37(11), 1745–1764.CrossRefPubMed
go back to reference Glenberg, A. M., & Jona, M. (1991). Temporal coding in rhythm tasks revealed by modality effects. Memory & Cognition, 19(5), 514–522.CrossRef Glenberg, A. M., & Jona, M. (1991). Temporal coding in rhythm tasks revealed by modality effects. Memory & Cognition, 19(5), 514–522.CrossRef
go back to reference Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 3–10.CrossRefPubMed Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 3–10.CrossRefPubMed
go back to reference Grahn, J. A. (2012). See what I hear? Beat perception in auditory and visual rhythms. Experimental Brain Research, 220(1), 51–61.CrossRefPubMed Grahn, J. A. (2012). See what I hear? Beat perception in auditory and visual rhythms. Experimental Brain Research, 220(1), 51–61.CrossRefPubMed
go back to reference Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., & Schnitzler, A. (2006). Anticipatory control of long-range phase synchronization. European Journal of Neuroscience, 24(7), 2057–2060.CrossRefPubMed Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., & Schnitzler, A. (2006). Anticipatory control of long-range phase synchronization. European Journal of Neuroscience, 24(7), 2057–2060.CrossRefPubMed
go back to reference Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see auditory encoding of visual temporal sequences. Psychological Science, 16(3), 228–235.CrossRefPubMedPubMedCentral Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see auditory encoding of visual temporal sequences. Psychological Science, 16(3), 228–235.CrossRefPubMedPubMedCentral
go back to reference Handel, S., & Buffardi, L. (1969). Using several modalities to perceive one temporal pattern. The Quarterly Journal of Experimental Psychology, 21(3), 256–266.CrossRefPubMed Handel, S., & Buffardi, L. (1969). Using several modalities to perceive one temporal pattern. The Quarterly Journal of Experimental Psychology, 21(3), 256–266.CrossRefPubMed
go back to reference Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L. (2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67(1), 331–343.CrossRefPubMed Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L. (2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67(1), 331–343.CrossRefPubMed
go back to reference Hari, R., Valta, M., & Uutela, K. (1999). Prolonged attentional dwell time in dyslexic adults. Neuroscience Letters, 271(3), 202–204.CrossRefPubMed Hari, R., Valta, M., & Uutela, K. (1999). Prolonged attentional dwell time in dyslexic adults. Neuroscience Letters, 271(3), 202–204.CrossRefPubMed
go back to reference Husain, M., Shapiro, K., Martin, J., & Kennard, C. (1997). Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature, 385(6612), 154–156.CrossRefPubMed Husain, M., Shapiro, K., Martin, J., & Kennard, C. (1997). Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature, 385(6612), 154–156.CrossRefPubMed
go back to reference Janson, J., & Kranczioch, C. (2011). Good vibrations, bad vibrations: oscillatory brain activity in the attentional blink. Advances in Cognitive Psychology, 7, 92–107.CrossRefPubMedPubMedCentral Janson, J., & Kranczioch, C. (2011). Good vibrations, bad vibrations: oscillatory brain activity in the attentional blink. Advances in Cognitive Psychology, 7, 92–107.CrossRefPubMedPubMedCentral
go back to reference Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological review, 83(5), 323–355.CrossRefPubMed Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological review, 83(5), 323–355.CrossRefPubMed
go back to reference Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological review, 96(3), 459–491.CrossRef Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological review, 96(3), 459–491.CrossRef
go back to reference Jones, M. R., Boltz, M., & Kidd, G. (1982). Controlled attending as a function of melodic and temporal context. Perception and Psychophysics, 32(3), 211–218.CrossRefPubMed Jones, M. R., Boltz, M., & Kidd, G. (1982). Controlled attending as a function of melodic and temporal context. Perception and Psychophysics, 32(3), 211–218.CrossRefPubMed
go back to reference Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313–319.CrossRefPubMed Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313–319.CrossRefPubMed
go back to reference Jones, M. R., & Yee, W. (1997). Sensitivity to time change: the role of context and skill. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 693–709. Jones, M. R., & Yee, W. (1997). Sensitivity to time change: the role of context and skill. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 693–709.
go back to reference Keysers, C., & Perrett, D. I. (2002). Visual masking and RSVP reveal neural competition. Trends in Cognitive Sciences, 6(3), 120–125.CrossRefPubMed Keysers, C., & Perrett, D. I. (2002). Visual masking and RSVP reveal neural competition. Trends in Cognitive Sciences, 6(3), 120–125.CrossRefPubMed
go back to reference Kim, C., & Blake, R. (2005). Psychophysical magic: rendering the visible ‘invisible’. Trends in Cognitive Sciences, 9(8), 381–388.CrossRefPubMed Kim, C., & Blake, R. (2005). Psychophysical magic: rendering the visible ‘invisible’. Trends in Cognitive Sciences, 9(8), 381–388.CrossRefPubMed
go back to reference Kranczioch, C., Debener, S., Maye, A., & Engel, A. K. (2007). Temporal dynamics of access to consciousness in the attentional blink. Neuroimage, 37(3), 947–955.CrossRefPubMed Kranczioch, C., Debener, S., Maye, A., & Engel, A. K. (2007). Temporal dynamics of access to consciousness in the attentional blink. Neuroimage, 37(3), 947–955.CrossRefPubMed
go back to reference Kranczioch, C., Debener, S., Schwarzbach, J., Goebel, R., & Engel, A. K. (2005). Neural correlates of conscious perception in the attentional blink. Neuroimage, 24(3), 704–714.CrossRefPubMed Kranczioch, C., Debener, S., Schwarzbach, J., Goebel, R., & Engel, A. K. (2005). Neural correlates of conscious perception in the attentional blink. Neuroimage, 24(3), 704–714.CrossRefPubMed
go back to reference Lacroix, G. L., Constantinescu, I., Cousineau, D., de Almeida, R. G., Segalowitz, N., & von Grünau, M. (2005). Attentional blink differences between adolescent dyslexic and normal readers. Brain and Cognition, 57(2), 115–119.CrossRefPubMed Lacroix, G. L., Constantinescu, I., Cousineau, D., de Almeida, R. G., Segalowitz, N., & von Grünau, M. (2005). Attentional blink differences between adolescent dyslexic and normal readers. Brain and Cognition, 57(2), 115–119.CrossRefPubMed
go back to reference Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110–113.CrossRefPubMed Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110–113.CrossRefPubMed
go back to reference Lamme, V. A., Zipser, K., & Spekreijse, H. (2002). Masking interrupts figure-ground signals in V1. Journal of Cognitive Neuroscience, 14(7), 1044–1053.CrossRefPubMed Lamme, V. A., Zipser, K., & Spekreijse, H. (2002). Masking interrupts figure-ground signals in V1. Journal of Cognitive Neuroscience, 14(7), 1044–1053.CrossRefPubMed
go back to reference Lapointe-Goupil, R., Fortin, C., Brisson, B., & Tremblay, S. (2011). Concurrency benefits in the attentional blink: attentional flexibility and shifts of decision criteria. Attention, Perception, & Psychophysics, 2, 374–388.CrossRef Lapointe-Goupil, R., Fortin, C., Brisson, B., & Tremblay, S. (2011). Concurrency benefits in the attentional blink: attentional flexibility and shifts of decision criteria. Attention, Perception, & Psychophysics, 2, 374–388.CrossRef
go back to reference Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159.CrossRef Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159.CrossRef
go back to reference Lum, J. A. G., Conti-Ramsden, G., & Lindell, A. K. (2007). The attentional blink reveals sluggish attentional shifting in adolescents with specific language impairment. Brain and Cognition, 63(3), 287–295.CrossRefPubMed Lum, J. A. G., Conti-Ramsden, G., & Lindell, A. K. (2007). The attentional blink reveals sluggish attentional shifting in adolescents with specific language impairment. Brain and Cognition, 63(3), 287–295.CrossRefPubMed
go back to reference MacLean, M. H., & Arnell, K. M. (2011). Greater attentional blink magnitude is associated with higher levels of anticipatory attention as measured by alpha event-related desynchronization (ERD). Brain Research, 1387, 99–107.CrossRefPubMed MacLean, M. H., & Arnell, K. M. (2011). Greater attentional blink magnitude is associated with higher levels of anticipatory attention as measured by alpha event-related desynchronization (ERD). Brain Research, 1387, 99–107.CrossRefPubMed
go back to reference Marois, R., Chun, M. M., & Gore, J. C. (2000). Neural correlates of the attentional blink. Neuron, 28(1), 299–308.CrossRefPubMed Marois, R., Chun, M. M., & Gore, J. C. (2000). Neural correlates of the attentional blink. Neuron, 28(1), 299–308.CrossRefPubMed
go back to reference Martens, S., & Johnson, A. (2005). Timing attention: cuing target onset interval attenuates the attentional blink. Memory & Cognition, 33(2), 234–240.CrossRef Martens, S., & Johnson, A. (2005). Timing attention: cuing target onset interval attenuates the attentional blink. Memory & Cognition, 33(2), 234–240.CrossRef
go back to reference Martens, S., & Wyble, B. (2010). The attentional blink: past, present, and future of a blind spot in perceptual awareness. Neuroscience and Biobehavioral Reviews, 34(6), 947–957.CrossRefPubMed Martens, S., & Wyble, B. (2010). The attentional blink: past, present, and future of a blind spot in perceptual awareness. Neuroscience and Biobehavioral Reviews, 34(6), 947–957.CrossRefPubMed
go back to reference Martin, E. W., Enns, J. T., & Shapiro, K. L. (2011). Turning the attentional blink on and off: opposing effects of spatial and temporal noise. Psychonomic Bulletin & Review, 18(2), 295–301.CrossRef Martin, E. W., Enns, J. T., & Shapiro, K. L. (2011). Turning the attentional blink on and off: opposing effects of spatial and temporal noise. Psychonomic Bulletin & Review, 18(2), 295–301.CrossRef
go back to reference Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A. (2010). Rescuing stimuli from invisibility: inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115(1), 186–191.CrossRefPubMed Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A. (2010). Rescuing stimuli from invisibility: inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115(1), 186–191.CrossRefPubMed
go back to reference McAuley, J. D., & Jones, M. R. (2003). Modeling effects of rhythmic context on perceived duration: a comparison of interval and entrainment approaches to short-interval timing. Journal of Experimental Psychology-Human Perception and Performance, 29(6), 1102–1125.CrossRefPubMed McAuley, J. D., & Jones, M. R. (2003). Modeling effects of rhythmic context on perceived duration: a comparison of interval and entrainment approaches to short-interval timing. Journal of Experimental Psychology-Human Perception and Performance, 29(6), 1102–1125.CrossRefPubMed
go back to reference Mercier, M. R., Foxe, J. J., Fiebelkorn, I. C., Butler, J. S., Schwartz, T. H., & Molholm, S. (2013). Auditory-driven phase reset in visual cortex: human electrocorticography reveals mechanisms of early multisensory integration. Neuroimage, 79, 19–29.CrossRefPubMedPubMedCentral Mercier, M. R., Foxe, J. J., Fiebelkorn, I. C., Butler, J. S., Schwartz, T. H., & Molholm, S. (2013). Auditory-driven phase reset in visual cortex: human electrocorticography reveals mechanisms of early multisensory integration. Neuroimage, 79, 19–29.CrossRefPubMedPubMedCentral
go back to reference Miller, J. E., Carlson, L. A., & McAuley, J. D. (2013). When what you hear influences when you see: listening to an auditory rhythm influences the temporal allocation of visual attention. Psychological Science, 24(1), 11–18.CrossRefPubMed Miller, J. E., Carlson, L. A., & McAuley, J. D. (2013). When what you hear influences when you see: listening to an auditory rhythm influences the temporal allocation of visual attention. Psychological Science, 24(1), 11–18.CrossRefPubMed
go back to reference Nieuwenstein, M. R., Johnson, A., Kanai, R., & Martens, S. (2007). Cross-task repetition amnesia: impaired recall of RSVP targets held in memory for a secondary task. Acta Psychologica, 125(3), 319–333.CrossRefPubMed Nieuwenstein, M. R., Johnson, A., Kanai, R., & Martens, S. (2007). Cross-task repetition amnesia: impaired recall of RSVP targets held in memory for a secondary task. Acta Psychologica, 125(3), 319–333.CrossRefPubMed
go back to reference Olivers, C. N. L., & Nieuwenhuis, S. (2005). The beneficial effect of concurrent task-irrelevant mental activity on temporal attention. Psychological Science, 16(4), 265–269.CrossRefPubMed Olivers, C. N. L., & Nieuwenhuis, S. (2005). The beneficial effect of concurrent task-irrelevant mental activity on temporal attention. Psychological Science, 16(4), 265–269.CrossRefPubMed
go back to reference Pincham, H. L., & Szűcs, D. (2012). Conscious access is linked to ongoing brain state: electrophysiological evidence from the attentional blink. Cerebral Cortex, 22(10), 2346–2353.CrossRefPubMed Pincham, H. L., & Szűcs, D. (2012). Conscious access is linked to ongoing brain state: electrophysiological evidence from the attentional blink. Cerebral Cortex, 22(10), 2346–2353.CrossRefPubMed
go back to reference Przybylski, L., Bedoin, N., Krifi-Papoz, S., Herbillon, V., Roch, D., Léculier, L., … Tillmann, B. (2013). Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology, 27(1), 121–131.CrossRefPubMed Przybylski, L., Bedoin, N., Krifi-Papoz, S., Herbillon, V., Roch, D., Léculier, L., … Tillmann, B. (2013). Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology, 27(1), 121–131.CrossRefPubMed
go back to reference Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–860.PubMed Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–860.PubMed
go back to reference Reedijk, S. A., Bolders, A., Colzato, L. S., & Hommel, B. (2015). Eliminating the attentional blink through binaural beats: a case for tailored cognitive enhancement. Frontiers in Psychiatry, 6, 82.CrossRefPubMedPubMedCentral Reedijk, S. A., Bolders, A., Colzato, L. S., & Hommel, B. (2015). Eliminating the attentional blink through binaural beats: a case for tailored cognitive enhancement. Frontiers in Psychiatry, 6, 82.CrossRefPubMedPubMedCentral
go back to reference Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychological Research, 68(4), 252–270.CrossRefPubMed Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychological Research, 68(4), 252–270.CrossRefPubMed
go back to reference Ruffino, M., Trussardi, A. N., Gori, S., Finzi, A., Giovagnoli, S., Menghini, D., & Facoetti, A. (2010). Attentional engagement deficits in dyslexic children. Neuropsychologia, 48(13), 3793–3801.CrossRefPubMed Ruffino, M., Trussardi, A. N., Gori, S., Finzi, A., Giovagnoli, S., Menghini, D., & Facoetti, A. (2010). Attentional engagement deficits in dyslexic children. Neuropsychologia, 48(13), 3793–3801.CrossRefPubMed
go back to reference Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–18.CrossRefPubMed Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–18.CrossRefPubMed
go back to reference Shapiro, K. L., Raymond, J., & Arnell, K. (2002). The attentional blink. Trends in Cognitive Sciences, 1(8), 291–296.CrossRef Shapiro, K. L., Raymond, J., & Arnell, K. (2002). The attentional blink. Trends in Cognitive Sciences, 1(8), 291–296.CrossRef
go back to reference Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. The Journal of Neuroscience, 30(41), 13578–13585.CrossRefPubMedPubMedCentral Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. The Journal of Neuroscience, 30(41), 13578–13585.CrossRefPubMedPubMedCentral
go back to reference Tang, M. F., Badcock, D. R., & Visser, T. A. (2014). Training and the attentional blink: limits overcome or expectations raised? Psychonomic Bulletin & Review, 21(2), 406–411.CrossRef Tang, M. F., Badcock, D. R., & Visser, T. A. (2014). Training and the attentional blink: limits overcome or expectations raised? Psychonomic Bulletin & Review, 21(2), 406–411.CrossRef
go back to reference Thut, G., Miniussi, C., & Gross, J. (2012). The functional importance of rhythmic activity in the brain. Current Biology, 22(16), 658–663.CrossRef Thut, G., Miniussi, C., & Gross, J. (2012). The functional importance of rhythmic activity in the brain. Current Biology, 22(16), 658–663.CrossRef
go back to reference Visser, T. A., Boden, C., & Giaschi, D. E. (2004). Children with dyslexia: evidence for visual attention deficits in perception of rapid sequences of objects. Vision Research, 44(21), 2521–2535.CrossRefPubMed Visser, T. A., Boden, C., & Giaschi, D. E. (2004). Children with dyslexia: evidence for visual attention deficits in perception of rapid sequences of objects. Vision Research, 44(21), 2521–2535.CrossRefPubMed
go back to reference Vroomen, J., & de Gelder, B. (2004). Temporal ventriloquism: sound modulates the flash-lag effect. Journal of Experimental Psychology: Human Perception and Performance, 30(3), 513–518.PubMed Vroomen, J., & de Gelder, B. (2004). Temporal ventriloquism: sound modulates the flash-lag effect. Journal of Experimental Psychology: Human Perception and Performance, 30(3), 513–518.PubMed
go back to reference Zauner, A., Fellinger, R., Gross, J., Hanslmayr, S., Shapiro, K., Gruber, W., & Klimesch, W. (2012). Alpha entrainment is responsible for the attentional blink phenomenon. NeuroImage, 63(2), 674–686.CrossRefPubMedPubMedCentral Zauner, A., Fellinger, R., Gross, J., Hanslmayr, S., Shapiro, K., Gruber, W., & Klimesch, W. (2012). Alpha entrainment is responsible for the attentional blink phenomenon. NeuroImage, 63(2), 674–686.CrossRefPubMedPubMedCentral
Metagegevens
Titel
Inducing attention not to blink: auditory entrainment improves conscious visual processing
Auteurs
Luca Ronconi
Hannah L. Pincham
Dénes Szűcs
Andrea Facoetti
Publicatiedatum
28-07-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2016
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0691-8

Andere artikelen Uitgave 5/2016

Psychological Research 5/2016 Naar de uitgave