Skip to main content
Top
Gepubliceerd in:

14-06-2019 | Original Article

Cueing distraction: electrophysiological evidence for anticipatory active suppression of distractor location

Auteurs: Anna Heuer, Anna Schubö

Gepubliceerd in: Psychological Research | Uitgave 8/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

It is well known that processing at upcoming target locations can be facilitated, but mixed results have been obtained regarding the inhibition of irrelevant locations when advance information about distractors is available on a trial-to-trial basis. Here, we provide electrophysiological evidence that distractor locations can be anticipatorily suppressed. In an additional singleton search task, distractor cues were presented before the search display, which were either fully predictive or non-predictive of the location of the upcoming salient colour distractor. The PD component of the event-related potential, a marker of active suppression, was elicited by lateral singletons and smaller following predictive than non-predictive cues, indicating that less suppression was required upon presentation of the distractor when its location was known in advance. Presumably, excitability of regions processing the predictively cued locations was anticipatorily reduced to prevent distraction. This idea was further supported by the finding that larger individual cueing benefits in reaction time were associated with stronger reductions of the PD. There was no behavioural benefit at the group level, however, and implications for the role of individual differences and for the measurement of inhibition in distractor cueing tasks are discussed. The enhancement of target locations, reflected by the NT component, was not modulated by the predictiveness of the cues. Overall, our findings add to a growing literature highlighting the importance of inhibitory mechanisms for the guidance of spatial attention by showing that irrelevant locations can be anticipatorily suppressed in a top-down fashion, reducing the impact of even salient stimuli.
Literatuur
go back to reference Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121, 74–83.PubMedCrossRef Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121, 74–83.PubMedCrossRef
go back to reference Chang, S., Cunningham, C. A., & Egeth, H. (2018). The power of negative thinking: Paradoxical but effective ignoring of salient-but-irrelevant stimuli with a spatial cue. Visual Cognition, Advance online publication. Chang, S., Cunningham, C. A., & Egeth, H. (2018). The power of negative thinking: Paradoxical but effective ignoring of salient-but-irrelevant stimuli with a spatial cue. Visual Cognition, Advance online publication.
go back to reference Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15–18. Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15–18.
go back to reference Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRef Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRef
go back to reference Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.PubMedCrossRef Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.PubMedCrossRef
go back to reference Feldmann-Wüstefeld, T., Uengoer, M., & Schubö, A. (2015). You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention. Psychophysiology, 52, 1483–1497.PubMedCrossRef Feldmann-Wüstefeld, T., Uengoer, M., & Schubö, A. (2015). You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention. Psychophysiology, 52, 1483–1497.PubMedCrossRef
go back to reference Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67–95.PubMedCrossRef Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67–95.PubMedCrossRef
go back to reference Fortier-Gauthier, U., Moffat, N., Dell’Acqua, R., McDonald, J. J., & Jolicœur, P. (2012). Contralateral cortical organisation of information in visual short-term memory: Evidence from lateralized brain activity during retrieval. Neuropsychologia, 50, 1748–1758.PubMedCrossRef Fortier-Gauthier, U., Moffat, N., Dell’Acqua, R., McDonald, J. J., & Jolicœur, P. (2012). Contralateral cortical organisation of information in visual short-term memory: Evidence from lateralized brain activity during retrieval. Neuropsychologia, 50, 1748–1758.PubMedCrossRef
go back to reference Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & McDonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113, 3693–3698.CrossRef Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & McDonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113, 3693–3698.CrossRef
go back to reference Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34, 5658–5666.PubMedCrossRef Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34, 5658–5666.PubMedCrossRef
go back to reference Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26, 1740–1750.PubMedPubMedCentralCrossRef Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26, 1740–1750.PubMedPubMedCentralCrossRef
go back to reference Gaspelin, N., Leonard, C. J., & Luck, S. J. (2016). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79, 45–62.CrossRef Gaspelin, N., Leonard, C. J., & Luck, S. J. (2016). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79, 45–62.CrossRef
go back to reference Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30, 1265–1280.PubMedPubMedCentralCrossRef Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30, 1265–1280.PubMedPubMedCentralCrossRef
go back to reference Gaspelin, N., & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22, 79–92.PubMedCrossRef Gaspelin, N., & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22, 79–92.PubMedCrossRef
go back to reference Geyer, T., Müller, H., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48, 1315–1326.PubMedCrossRef Geyer, T., Müller, H., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48, 1315–1326.PubMedCrossRef
go back to reference Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760–775.PubMedCrossRef Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760–775.PubMedCrossRef
go back to reference Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39, 1713–1730.PubMed Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39, 1713–1730.PubMed
go back to reference Luck, S. J. (2012). Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In E. S. Kappenman & S. J. Luck (Eds.), The Oxford handbook of event-related potential components (pp. 329–360). Oxford: Oxford University Press. Luck, S. J. (2012). Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In E. S. Kappenman & S. J. Luck (Eds.), The Oxford handbook of event-related potential components (pp. 329–360). Oxford: Oxford University Press.
go back to reference Moher, J., Abrams, J., Egeth, H. E., Yantis, S., & Stuphorn, V. (2011). Trial-by-trial adjustments of top-down set modulate oculomotor capture. Psychonomic Bulletin & Review, 18, 897–903.CrossRef Moher, J., Abrams, J., Egeth, H. E., Yantis, S., & Stuphorn, V. (2011). Trial-by-trial adjustments of top-down set modulate oculomotor capture. Psychonomic Bulletin & Review, 18, 897–903.CrossRef
go back to reference Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74, 1590–1605.CrossRef Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74, 1590–1605.CrossRef
go back to reference Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception and Performance, 35, 1–16.PubMed Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception and Performance, 35, 1–16.PubMed
go back to reference Munneke, J., Fait, E., & Mazza, V. (2013). Attentional processing of multiple targets and distractors. Psychophysiology, 50, 1104–1108.PubMedCrossRef Munneke, J., Fait, E., & Mazza, V. (2013). Attentional processing of multiple targets and distractors. Psychophysiology, 50, 1104–1108.PubMedCrossRef
go back to reference Munneke, J., Heslenfeld, D. J., Usrey, W. M., Theeuwes, J., & Mangun, G. R. (2011). Preparatory effects of distractor suppression: Evidence from visual cortex. PLoS ONE, 6, e27700.PubMedPubMedCentralCrossRef Munneke, J., Heslenfeld, D. J., Usrey, W. M., Theeuwes, J., & Mangun, G. R. (2011). Preparatory effects of distractor suppression: Evidence from visual cortex. PLoS ONE, 6, e27700.PubMedPubMedCentralCrossRef
go back to reference Munneke, J., Van der Stigchel, S., & Theeuwes, J. (2008). Cueing the location of a distractor: An inhibitory mechanism of spatial attention? Acta Psychologica, 129, 101–107.PubMedCrossRef Munneke, J., Van der Stigchel, S., & Theeuwes, J. (2008). Cueing the location of a distractor: An inhibitory mechanism of spatial attention? Acta Psychologica, 129, 101–107.PubMedCrossRef
go back to reference Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869.PubMedCrossRef Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869.PubMedCrossRef
go back to reference Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedCrossRef Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedCrossRef
go back to reference Ruff, C. C., & Driver, J. (2006). Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence. Journal of Cognitive Neuroscience, 18, 522–538.PubMedCrossRef Ruff, C. C., & Driver, J. (2006). Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence. Journal of Cognitive Neuroscience, 18, 522–538.PubMedCrossRef
go back to reference Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32, 10725–10736.PubMedCrossRef Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32, 10725–10736.PubMedCrossRef
go back to reference Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception & Psychophysics, 72, 1455–1470.CrossRef Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception & Psychophysics, 72, 1455–1470.CrossRef
go back to reference Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 80, 860–870.CrossRef Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 80, 860–870.CrossRef
go back to reference Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44, 13–17.PubMed Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44, 13–17.PubMed
go back to reference Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80, 1763–1774.CrossRef Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80, 1763–1774.CrossRef
go back to reference Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121–138.PubMed Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121–138.PubMed
Metagegevens
Titel
Cueing distraction: electrophysiological evidence for anticipatory active suppression of distractor location
Auteurs
Anna Heuer
Anna Schubö
Publicatiedatum
14-06-2019
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 8/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-019-01211-4

Andere artikelen Uitgave 8/2020

Psychological Research 8/2020 Naar de uitgave