Skip to main content
Top
Gepubliceerd in:

12-06-2019 | Original Article

Measuring attention to reward as an individual trait: the value-driven attention questionnaire (VDAQ)

Auteurs: Brian A. Anderson, Haena Kim, Mark K. Britton, Andy Jeesu Kim

Gepubliceerd in: Psychological Research | Uitgave 8/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Reward history is a powerful determinant of what we pay attention to. This influence of reward on attention varies substantially across individuals, being related to a variety of personality variables and clinical conditions. Currently, the ability to measure and quantify attention-to-reward is restricted to the use of psychophysical laboratory tasks, which limits research into the construct in a variety of ways. In the present study, we introduce a questionnaire designed to provide a brief and accessible means of assessing attention-to-reward. Scores on the questionnaire correlate with other measures known to be related to attention-to-reward and predict performance on multiple laboratory tasks measuring the construct. In demonstrating this relationship, we also provide evidence that attention-to-reward as measured in the lab, an automatic and implicit bias in information processing, is related to overt behaviors and motivations in everyday life as assessed via the questionnaire. Variation in scores on the questionnaire is additionally associated with a distinct biomarker in brain connectivity, and the questionnaire exhibits acceptable test–retest reliability. Overall, the Value-Driven Attention Questionnaire (VDAQ) provides a useful proxy-measure of attention-to-reward that is much more accessible than typical laboratory assessments.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Albertella, L., Copeland, D., Pearson, D., Watson, P., Wiers, R. W., & Le Pelley, M. E. (2017). Selective attention moderates the relationship between attentional capture by signals of nondrug reward and illicit drug use. Drug and Alcohol Dependence, 175, 99–105.PubMed Albertella, L., Copeland, D., Pearson, D., Watson, P., Wiers, R. W., & Le Pelley, M. E. (2017). Selective attention moderates the relationship between attentional capture by signals of nondrug reward and illicit drug use. Drug and Alcohol Dependence, 175, 99–105.PubMed
go back to reference Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 1–16. Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 1–16.
go back to reference Anderson, B. A. (2015a). Value-driven attentional capture is modulated by spatial context. Visual Cognition, 23, 67–81.PubMed Anderson, B. A. (2015a). Value-driven attentional capture is modulated by spatial context. Visual Cognition, 23, 67–81.PubMed
go back to reference Anderson, B. A. (2015b). Value-driven attentional priority is context specific. Psychonomic Bulletin and Review, 22, 750–756.PubMed Anderson, B. A. (2015b). Value-driven attentional priority is context specific. Psychonomic Bulletin and Review, 22, 750–756.PubMed
go back to reference Anderson, B. A. (2016a). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369, 24–39.PubMed Anderson, B. A. (2016a). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369, 24–39.PubMed
go back to reference Anderson, B. A. (2016b). What is abnormal about addiction-related attentional biases? Drug and Alcohol Dependence, 167, 8–14.PubMedPubMedCentral Anderson, B. A. (2016b). What is abnormal about addiction-related attentional biases? Drug and Alcohol Dependence, 167, 8–14.PubMedPubMedCentral
go back to reference Anderson, B. A. (2017a). Going for it: The economics of automaticity in perception and action. Current Directions in Psychological Science, 26, 140–145. Anderson, B. A. (2017a). Going for it: The economics of automaticity in perception and action. Current Directions in Psychological Science, 26, 140–145.
go back to reference Anderson, B. A. (2017b). Reward processing in the value-driven attention network: Reward signals tracking cue identity and location. Social, Cognitive, and Affective Neuroscience, 12, 461–467. Anderson, B. A. (2017b). Reward processing in the value-driven attention network: Reward signals tracking cue identity and location. Social, Cognitive, and Affective Neuroscience, 12, 461–467.
go back to reference Anderson, B. A. (2019). Neurobiology of value-driven attention. Current Opinion in Psychology, 29, 27–33.PubMed Anderson, B. A. (2019). Neurobiology of value-driven attention. Current Opinion in Psychology, 29, 27–33.PubMed
go back to reference Anderson, B. A., Chiu, M., DiBartolo, M. M., & Leal, S. L. (2017a). On the distinction between value-driven attention and selection history: Evidence from individuals with depressive symptoms. Psychonomic Bulletin & Review, 24, 1636–1642. Anderson, B. A., Chiu, M., DiBartolo, M. M., & Leal, S. L. (2017a). On the distinction between value-driven attention and selection history: Evidence from individuals with depressive symptoms. Psychonomic Bulletin & Review, 24, 1636–1642.
go back to reference Anderson, B. A., Faulkner, M. L., Rilee, J. J., Yantis, S., & Marvel, C. L. (2013a). Attentional bias for non-drug reward is magnified in addiction. Experimental and Clinical Psychopharmacology, 21, 499–506.PubMedPubMedCentral Anderson, B. A., Faulkner, M. L., Rilee, J. J., Yantis, S., & Marvel, C. L. (2013a). Attentional bias for non-drug reward is magnified in addiction. Experimental and Clinical Psychopharmacology, 21, 499–506.PubMedPubMedCentral
go back to reference Anderson, B. A., Folk, C. L., Garrison, R., & Rogers, L. (2016a). Mechanisms of habitual approach: Failure to suppress irrelevant responses evoked by previously reward-associated stimuli. Journal of Experimental Psychology: General, 145, 796–805. Anderson, B. A., Folk, C. L., Garrison, R., & Rogers, L. (2016a). Mechanisms of habitual approach: Failure to suppress irrelevant responses evoked by previously reward-associated stimuli. Journal of Experimental Psychology: General, 145, 796–805.
go back to reference Anderson, B. A., & Kim, H. (2018a). Mechanisms of value-learning in the guidance of spatial attention. Cognition, 178, 26–36.PubMed Anderson, B. A., & Kim, H. (2018a). Mechanisms of value-learning in the guidance of spatial attention. Cognition, 178, 26–36.PubMed
go back to reference Anderson, B. A., & Kim, H. (2018b). Relating attentional biases for stimuli associated with social reward and punishment to autistic traits. Collabra Psychology, 4(1), 10. Anderson, B. A., & Kim, H. (2018b). Relating attentional biases for stimuli associated with social reward and punishment to autistic traits. Collabra Psychology, 4(1), 10.
go back to reference Anderson, B. A., & Kim, H. (2019a). On the relationship between value-driven and stimulus-driven attentional capture. Attention, Perception, and Psychophysics, 81, 607–613. Anderson, B. A., & Kim, H. (2019a). On the relationship between value-driven and stimulus-driven attentional capture. Attention, Perception, and Psychophysics, 81, 607–613.
go back to reference Anderson, B. A., & Kim, H. (2019b). Test-retest reliability of value-driven attentional capture. Behavior Research Methods, 51(2), 720–726.PubMed Anderson, B. A., & Kim, H. (2019b). Test-retest reliability of value-driven attentional capture. Behavior Research Methods, 51(2), 720–726.PubMed
go back to reference Anderson, B. A., Kronemer, S. I., Rilee, J. J., Sacktor, N., & Marvel, C. L. (2016b). Reward, attention, and HIV-related risk in HIV+ individuals. Neurobiology of Disease, 92, 157–165.PubMed Anderson, B. A., Kronemer, S. I., Rilee, J. J., Sacktor, N., & Marvel, C. L. (2016b). Reward, attention, and HIV-related risk in HIV+ individuals. Neurobiology of Disease, 92, 157–165.PubMed
go back to reference Anderson, B. A., Kuwabara, H., Wong, D. F., Gean, E. G., Rahmim, A., Brasic, J. R., … Yantis, S. (2016c). The role of dopamine in value-based attentional orienting. Current Biology, 26, 550–555.PubMed Anderson, B. A., Kuwabara, H., Wong, D. F., Gean, E. G., Rahmim, A., Brasic, J. R., … Yantis, S. (2016c). The role of dopamine in value-based attentional orienting. Current Biology, 26, 550–555.PubMed
go back to reference Anderson, B. A., Kuwabara, H., Wong, D. F., Roberts, J., Rahmim, A., Brasic, J. R., & Courtney, S. M. (2017b). Linking dopaminergic reward signals to the development of attentional bias: A positron emission tomographic study. NeuroImage, 157, 27–33.PubMed Anderson, B. A., Kuwabara, H., Wong, D. F., Roberts, J., Rahmim, A., Brasic, J. R., & Courtney, S. M. (2017b). Linking dopaminergic reward signals to the development of attentional bias: A positron emission tomographic study. NeuroImage, 157, 27–33.PubMed
go back to reference Anderson, B. A., Laurent, P. A., & Yantis, S. (2011a). Learned value magnifies salience-based attentional capture. PLoS ONE, 6, e27926.PubMedPubMedCentral Anderson, B. A., Laurent, P. A., & Yantis, S. (2011a). Learned value magnifies salience-based attentional capture. PLoS ONE, 6, e27926.PubMedPubMedCentral
go back to reference Anderson, B. A., Laurent, P. A., & Yantis, S. (2011b). Value-driven attentional capture. Proceedings of the National Academy of Sciences USA, 108, 10367–10371. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011b). Value-driven attentional capture. Proceedings of the National Academy of Sciences USA, 108, 10367–10371.
go back to reference Anderson, B. A., Laurent, P. A., & Yantis, S. (2013b). Reward predictions bias attentional selection. Frontiers in Human Neuroscience, 7, 262.PubMedPubMedCentral Anderson, B. A., Laurent, P. A., & Yantis, S. (2013b). Reward predictions bias attentional selection. Frontiers in Human Neuroscience, 7, 262.PubMedPubMedCentral
go back to reference Anderson, B. A., Laurent, P. A., & Yantis, S. (2014a). Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Research, 1587, 88–96.PubMedPubMedCentral Anderson, B. A., Laurent, P. A., & Yantis, S. (2014a). Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Research, 1587, 88–96.PubMedPubMedCentral
go back to reference Anderson, B. A., Leal, S. L., Hall, M. G., Yassa, M. A., & Yantis, S. (2014b). The attribution of value-based attentional priority in individuals with depressive symptoms. Cognitive, Affective, and Behavioral Neuroscience, 14, 1221–1227. Anderson, B. A., Leal, S. L., Hall, M. G., Yassa, M. A., & Yantis, S. (2014b). The attribution of value-based attentional priority in individuals with depressive symptoms. Cognitive, Affective, and Behavioral Neuroscience, 14, 1221–1227.
go back to reference Anderson, B. A., & Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, and Psychophysics, 74, 1644–1653. Anderson, B. A., & Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, and Psychophysics, 74, 1644–1653.
go back to reference Anderson, B. A., & Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 39, 6–9.PubMed Anderson, B. A., & Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 39, 6–9.PubMed
go back to reference Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubly, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17.PubMed Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubly, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17.PubMed
go back to reference Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35, 1124–1143.PubMed Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35, 1124–1143.PubMed
go back to reference Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist, 71, 670–679.PubMed Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist, 71, 670–679.PubMed
go back to reference Bourgeois, A., Chelazzi, L., & Vuilleumier, P. (2016). How motivation and reward learning modulate selective attention. Progress in Brain Research, 229, 325–342.PubMed Bourgeois, A., Chelazzi, L., & Vuilleumier, P. (2016). How motivation and reward learning modulate selective attention. Progress in Brain Research, 229, 325–342.PubMed
go back to reference Bourgeois, A., Neveu, R., Bayle, D. J., & Vuilleumier, P. (2017). How does reward compete with goal-directed and stimulus-driven shifts of attention? Cognition and Emotion, 31, 109–118.PubMed Bourgeois, A., Neveu, R., Bayle, D. J., & Vuilleumier, P. (2017). How does reward compete with goal-directed and stimulus-driven shifts of attention? Cognition and Emotion, 31, 109–118.PubMed
go back to reference Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.PubMed Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.PubMed
go back to reference Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319–333. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319–333.
go back to reference Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.PubMed Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.PubMed
go back to reference De Tommaso, M., Mastropasqua, T., & Turatto, M. (2017). The salience of a reward cue can outlast reward devaluation. Behavioral Neuroscience, 131, 226–234.PubMed De Tommaso, M., Mastropasqua, T., & Turatto, M. (2017). The salience of a reward cue can outlast reward devaluation. Behavioral Neuroscience, 131, 226–234.PubMed
go back to reference Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20, 778–784.PubMed Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20, 778–784.PubMed
go back to reference Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMed Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMed
go back to reference Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin and Review, 25, 514–538.PubMed Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin and Review, 25, 514–538.PubMed
go back to reference Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attention networks. NeuroImage, 26, 471–479.PubMed Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attention networks. NeuroImage, 26, 471–479.PubMed
go back to reference Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficacy and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.PubMed Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficacy and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.PubMed
go back to reference Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.PubMed Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.PubMed
go back to reference Hickey, C., Chelazzi, L., & Theeuwes, J. (2010a). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30, 11096–11103.PubMed Hickey, C., Chelazzi, L., & Theeuwes, J. (2010a). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30, 11096–11103.PubMed
go back to reference Hickey, C., Chelazzi, L., & Theeuwes, J. (2010b). Reward guides vision when it’s your thing: Trait reward-seeking in reward-mediated visual priming. PLoS ONE, 5, e14087.PubMedPubMedCentral Hickey, C., Chelazzi, L., & Theeuwes, J. (2010b). Reward guides vision when it’s your thing: Trait reward-seeking in reward-mediated visual priming. PLoS ONE, 5, e14087.PubMedPubMedCentral
go back to reference Hickey, C., & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85, 512–518.PubMed Hickey, C., & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85, 512–518.PubMed
go back to reference Hickey, C., & Peelen, M. V. (2017). Reward selectively modulates the lingering neural representation of recently attended objects in natural scenes. Journal of Neuroscience, 37, 7297–7304.PubMed Hickey, C., & Peelen, M. V. (2017). Reward selectively modulates the lingering neural representation of recently attended objects in natural scenes. Journal of Neuroscience, 37, 7297–7304.PubMed
go back to reference Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences USA, 107, 8871–8876. Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences USA, 107, 8871–8876.
go back to reference Kim, H., & Anderson, B. A. (2019b). Neural evidence for automatic value-modulated approach behavior. NeuroImage, 189, 150–158.PubMed Kim, H., & Anderson, B. A. (2019b). Neural evidence for automatic value-modulated approach behavior. NeuroImage, 189, 150–158.PubMed
go back to reference Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20, 245–251.PubMed Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20, 245–251.PubMed
go back to reference Leganes-Fonteneau, M., Scott, R., & Duka, T. (2018). Attentional responses to stimuli associated with a reward can occur in the absence of knowledge of their predictive values. Behavioural Brain Research, 341, 26–36.PubMed Leganes-Fonteneau, M., Scott, R., & Duka, T. (2018). Attentional responses to stimuli associated with a reward can occur in the absence of knowledge of their predictive values. Behavioural Brain Research, 341, 26–36.PubMed
go back to reference Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press. Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press.
go back to reference Murty, V. P., Labar, K. S., & Adcock, R. A. (2012). Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe. Journal of Neuroscience, 32, 8969–8976.PubMed Murty, V. P., Labar, K. S., & Adcock, R. A. (2012). Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe. Journal of Neuroscience, 32, 8969–8976.PubMed
go back to reference Navalpakkam, V., Koch, C., & Perona, P. (2009). Homo economicus in visual search. Journal of Vision, 9(1), 1–16.PubMed Navalpakkam, V., Koch, C., & Perona, P. (2009). Homo economicus in visual search. Journal of Vision, 9(1), 1–16.PubMed
go back to reference Navalpakkam, V., Koch, C., Rangel, A., & Perona, P. (2010). Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences, USA, 107, 5232–5237. Navalpakkam, V., Koch, C., Rangel, A., & Perona, P. (2010). Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences, USA, 107, 5232–5237.
go back to reference O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769–776.PubMed O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769–776.PubMed
go back to reference Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768–774.PubMed Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768–774.PubMed
go back to reference Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers Neuroscience, 4(17), 1–8. Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers Neuroscience, 4(17), 1–8.
go back to reference Pool, E., Brosch, T., Delplanque, S., & Sander, D. (2014). Where is the chocolate? Rapid spatial orienting toward stimuli associated with primary rewards. Cognition, 130, 348–359.PubMed Pool, E., Brosch, T., Delplanque, S., & Sander, D. (2014). Where is the chocolate? Rapid spatial orienting toward stimuli associated with primary rewards. Cognition, 130, 348–359.PubMed
go back to reference Qi, S., Zeng, Q., Ding, C., & Li, H. (2013). Neural correlates of reward-driven attentional capture in visual search. Brain Research, 1532, 32–43.PubMed Qi, S., Zeng, Q., Ding, C., & Li, H. (2013). Neural correlates of reward-driven attentional capture in visual search. Brain Research, 1532, 32–43.PubMed
go back to reference Raymond, J. E., & O’Brien, J. L. (2009). Selective visual attention and motivation: The consequences of value learning in an attentional blink task. Psychological Science, 20, 981–988.PubMed Raymond, J. E., & O’Brien, J. L. (2009). Selective visual attention and motivation: The consequences of value learning in an attentional blink task. Psychological Science, 20, 981–988.PubMed
go back to reference Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373. Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373.
go back to reference Sali, A. W., Anderson, B. A., & Yantis, S. (2014). The role of reward prediction in the control of attention. Journal of Experimental Psychology: Human Perception and Performance, 40, 1654–1664.PubMed Sali, A. W., Anderson, B. A., & Yantis, S. (2014). The role of reward prediction in the control of attention. Journal of Experimental Psychology: Human Perception and Performance, 40, 1654–1664.PubMed
go back to reference Sali, A. W., Anderson, B. A., Yantis, S., Mostofsky, S. H., & Rosch, K. S. (2018). Reduced value-driven attentional capture among children with ADHD compared to typically developing controls. Journal of Abnormal Child Psychology, 46, 1187–1200.PubMedPubMedCentral Sali, A. W., Anderson, B. A., Yantis, S., Mostofsky, S. H., & Rosch, K. S. (2018). Reduced value-driven attentional capture among children with ADHD compared to typically developing controls. Journal of Abnormal Child Psychology, 46, 1187–1200.PubMedPubMedCentral
go back to reference Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion, 29, 687–694.PubMed Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion, 29, 687–694.PubMed
go back to reference Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2017). The time course of attentional bias to cues of threat and safety. Cognition and Emotion, 31, 845–857.PubMed Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2017). The time course of attentional bias to cues of threat and safety. Cognition and Emotion, 31, 845–857.PubMed
go back to reference Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.PubMed Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.PubMed
go back to reference Seitz, A. R., Kim, D., & Watanabe, T. (2009). Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron, 61, 700–707.PubMedPubMedCentral Seitz, A. R., Kim, D., & Watanabe, T. (2009). Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron, 61, 700–707.PubMedPubMedCentral
go back to reference Serences, J. T., & Saproo, S. (2010). Population response profiles in early visual cortex are biased in favor of more valuable stimuli. Journal of Neurophysiology, 104, 76–87.PubMedPubMedCentral Serences, J. T., & Saproo, S. (2010). Population response profiles in early visual cortex are biased in favor of more valuable stimuli. Journal of Neurophysiology, 104, 76–87.PubMedPubMedCentral
go back to reference Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme.
go back to reference Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51, 599–606.PubMed Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51, 599–606.PubMed
go back to reference Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.PubMed Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.PubMed
go back to reference Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438.PubMed Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438.PubMed
go back to reference van Koningsbruggen, M. G., Ficarella, S. C., Battelli, L., & Hickey, C. (2016). Transcranial random noise stimulation of visual cortex potentiates value-driven attentional capture. Social, Cognitive, and Affective Neuroscience, 11, 1481–1488. van Koningsbruggen, M. G., Ficarella, S. C., Battelli, L., & Hickey, C. (2016). Transcranial random noise stimulation of visual cortex potentiates value-driven attentional capture. Social, Cognitive, and Affective Neuroscience, 11, 1481–1488.
go back to reference Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43–48.PubMed Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43–48.PubMed
go back to reference Wang, L., Yu, H., Hu, J., Theeuwes, J., Gong, X., Xiang, Y., … Zhou, X. (2015). Reward breaks through center-surround inhibition via anterior insula. Human Brain Mapping, 36, 5233–5251.PubMedPubMedCentral Wang, L., Yu, H., Hu, J., Theeuwes, J., Gong, X., Xiang, Y., … Zhou, X. (2015). Reward breaks through center-surround inhibition via anterior insula. Human Brain Mapping, 36, 5233–5251.PubMedPubMedCentral
go back to reference Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided Search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419–433.PubMed Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided Search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419–433.PubMed
go back to reference Yamamoto, S., Kim, H. F., & Hikosaka, O. (2013). Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill. The Journal of Neuroscience, 33, 11227–11238.PubMedPubMedCentral Yamamoto, S., Kim, H. F., & Hikosaka, O. (2013). Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill. The Journal of Neuroscience, 33, 11227–11238.PubMedPubMedCentral
go back to reference Yamamoto, S., Monosov, I. E., Yasuda, M., & Hikosaka, O. (2012). What and where information in the caudate tail guides saccades to visual objects. The Journal of Neuroscience, 32, 11005–11016.PubMedPubMedCentral Yamamoto, S., Monosov, I. E., Yasuda, M., & Hikosaka, O. (2012). What and where information in the caudate tail guides saccades to visual objects. The Journal of Neuroscience, 32, 11005–11016.PubMedPubMedCentral
go back to reference Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 350–374. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 350–374.
go back to reference Zhang, J.-T., Ma, S.-S., Yip, S. W., Wang, L.-J., Chen, C., Yan, C.-G., … Fang, X.-Y. (2015). Decreased functional connectivity between ventral tegmental area and nucleus accumbens in internet gaming disorder: Evidence from resting state functional magnetic resonance imaging. Behavioral and Brain Functions, 11(37), 1–7. Zhang, J.-T., Ma, S.-S., Yip, S. W., Wang, L.-J., Chen, C., Yan, C.-G., … Fang, X.-Y. (2015). Decreased functional connectivity between ventral tegmental area and nucleus accumbens in internet gaming disorder: Evidence from resting state functional magnetic resonance imaging. Behavioral and Brain Functions, 11(37), 1–7.
Metagegevens
Titel
Measuring attention to reward as an individual trait: the value-driven attention questionnaire (VDAQ)
Auteurs
Brian A. Anderson
Haena Kim
Mark K. Britton
Andy Jeesu Kim
Publicatiedatum
12-06-2019
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 8/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-019-01212-3

Andere artikelen Uitgave 8/2020

Psychological Research 8/2020 Naar de uitgave