Skip to main content
Top
Gepubliceerd in:

09-11-2015 | Original Article

Tracking practice effects in computation estimation

Auteurs: Dana Ganor-Stern, Nilly Weiss

Gepubliceerd in: Psychological Research | Uitgave 3/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The present study investigated college students’ ability to estimate the results of multi-digit multiplication problems and the extent to which this ability improves with practice. Participants judged whether the results of multiplication problems composed of two-digit numbers were larger or smaller than a given reference number. The reference numbers were either close or far from the exact answer. The effects of practice, size, and distance of the reference number from the exact answer were examined using four measures of performance: speed, accuracy, eye movements, and strategy use. The results show that together with enhanced speed and accuracy with practice, participants also changed the pattern of eye movements and the strategies they used. The eye movement analysis showed longer dwell time and more frequent first fixations toward the reference number with practice, suggesting that participants relied more on the reference number to solve the task with practice. The strategy analysis revealed that with practice participants reduced their use of the approximate calculation strategy, which involves multiplying the rounded operands and comparing the product to the reference number, and increased their reliance on the sense of magnitude strategy which does not involve any calculation, but is grounded in the ANS. This was done especially for trials in which the reference number was far from the exact answer, thus exhibiting enhanced adaptivity in strategy choice with practice.
Literatuur
go back to reference Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah: LEA. Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah: LEA.
go back to reference Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.CrossRefPubMed Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.CrossRefPubMed
go back to reference Ashcraft, M. H., & Stazyk, E. H. (1981). Mental addition: a test of three verification models. Memory and Cognition, 9, 185–196.CrossRefPubMed Ashcraft, M. H., & Stazyk, E. H. (1981). Mental addition: a test of three verification models. Memory and Cognition, 9, 185–196.CrossRefPubMed
go back to reference Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.CrossRefPubMed Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.CrossRefPubMed
go back to reference De Corte, E., Verschaffel, L., & Pauwels, A. (1990). Influence of the semantic structure of word problems on second graders’ eye movements. Journal of Educational Psychology, 82(2), 359.CrossRef De Corte, E., Verschaffel, L., & Pauwels, A. (1990). Influence of the semantic structure of word problems on second graders’ eye movements. Journal of Educational Psychology, 82(2), 359.CrossRef
go back to reference Dehaene, S. (1997). The number sense. New York: Oxford University Press. Dehaene, S. (1997). The number sense. New York: Oxford University Press.
go back to reference Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(9), 355–361.CrossRefPubMed Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(9), 355–361.CrossRefPubMed
go back to reference Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003). Learning complex arithmetic—an fMRI study. Cognitive Brain Research, 18, 76–88.CrossRefPubMed Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003). Learning complex arithmetic—an fMRI study. Cognitive Brain Research, 18, 76–88.CrossRefPubMed
go back to reference Dowker, A. (1997). Young children’s addition estimates. Mathematical Cognition, 3, 141–154.CrossRef Dowker, A. (1997). Young children’s addition estimates. Mathematical Cognition, 3, 141–154.CrossRef
go back to reference Dowker, A., Flood, A., Griffiths, H., Harriss, L., & Hook, L. (1996). Estimation strategies of four groups. Mathematical Cognition, 2, 113–135.CrossRef Dowker, A., Flood, A., Griffiths, H., Harriss, L., & Hook, L. (1996). Estimation strategies of four groups. Mathematical Cognition, 2, 113–135.CrossRef
go back to reference Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.CrossRefPubMed Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.CrossRefPubMed
go back to reference Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.CrossRefPubMed Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.CrossRefPubMed
go back to reference Ganor-Stern, D. (2015a). Can dyscalculics estimate the results of arithmetic problems? Journal of Learning Disabilities. Ganor-Stern, D. (2015a). Can dyscalculics estimate the results of arithmetic problems? Journal of Learning Disabilities.
go back to reference Ganor-Stern, D. (2015b). When you don’t have to be exact—investigating computation estimation skills with a comparison task. Acta Psychologica, 154, 1–9.CrossRefPubMed Ganor-Stern, D. (2015b). When you don’t have to be exact—investigating computation estimation skills with a comparison task. Acta Psychologica, 154, 1–9.CrossRefPubMed
go back to reference Geary, D. C. (1994). Children’s mathematical development. Washington, DC: American Psychological Association. Geary, D. C. (1994). Children’s mathematical development. Washington, DC: American Psychological Association.
go back to reference Geary, D. C., Brown, S., & Samaranayake, V. A. (1991). Cognitive addition: a short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental Psychology, 27(5), 787–797.CrossRef Geary, D. C., Brown, S., & Samaranayake, V. A. (1991). Cognitive addition: a short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental Psychology, 27(5), 787–797.CrossRef
go back to reference Green, H. J., Lemaire, P., & Dufau, S. (2007). Eye movement correlates of younger and older adults’ strategies for complex addition. Acta Psychologica, 125(3), 257–278.CrossRefPubMed Green, H. J., Lemaire, P., & Dufau, S. (2007). Eye movement correlates of younger and older adults’ strategies for complex addition. Acta Psychologica, 125(3), 257–278.CrossRefPubMed
go back to reference Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception and Psychophysics, 57(6), 787–795.CrossRefPubMed Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception and Psychophysics, 57(6), 787–795.CrossRefPubMed
go back to reference Huber, S., Cornelsen, S., Moeller, K., & Nuerk, H.-C. (2015). Toward a model framework of generalized parallel componential processing of multi-symbol numbers. Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(3), 732.CrossRefPubMed Huber, S., Cornelsen, S., Moeller, K., & Nuerk, H.-C. (2015). Toward a model framework of generalized parallel componential processing of multi-symbol numbers. Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(3), 732.CrossRefPubMed
go back to reference Huber, S., Mann, A., Nuerk, H.-C., & Möller, K. (2014a). Cognitive control in number magnitude processing: evidence from eye-tracking. Psychological Research, 78(4), 539–548.CrossRefPubMed Huber, S., Mann, A., Nuerk, H.-C., & Möller, K. (2014a). Cognitive control in number magnitude processing: evidence from eye-tracking. Psychological Research, 78(4), 539–548.CrossRefPubMed
go back to reference Huber, S., Moeller, K., & Nuerk, H. C. (2014b). Adaptive processing of fractions—evidence from eye-tracking. Acta Psychologica, 148, 37–48.CrossRefPubMed Huber, S., Moeller, K., & Nuerk, H. C. (2014b). Adaptive processing of fractions—evidence from eye-tracking. Acta Psychologica, 148, 37–48.CrossRefPubMed
go back to reference Imbo, I., & Vandierendonck, A. (2008). Practice effects on strategy selection and strategy efficiency in simple mental arithmetic. Psychological Research, 72(5), 528–541.CrossRefPubMed Imbo, I., & Vandierendonck, A. (2008). Practice effects on strategy selection and strategy efficiency in simple mental arithmetic. Psychological Research, 72(5), 528–541.CrossRefPubMed
go back to reference Kallai, A., & Tzelgov, J. (2012). The place-value of a digit in multi-digit numbers is processed automatically. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(5), 1221–1233.CrossRefPubMed Kallai, A., & Tzelgov, J. (2012). The place-value of a digit in multi-digit numbers is processed automatically. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(5), 1221–1233.CrossRefPubMed
go back to reference Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: the perils and promise of using verbal reports to study math strategies. Journal of Experimental Psychology. Learning, memory, and cognition, 27, 157–175.CrossRefPubMed Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: the perils and promise of using verbal reports to study math strategies. Journal of Experimental Psychology. Learning, memory, and cognition, 27, 157–175.CrossRefPubMed
go back to reference LeFevre, J.-A., Greenham, S. L., & Waheed, N. (1993). The development of procedural and conceptual knowledge in computational estimation. Cognition and Instruction, 11, 95–132.CrossRef LeFevre, J.-A., Greenham, S. L., & Waheed, N. (1993). The development of procedural and conceptual knowledge in computational estimation. Cognition and Instruction, 11, 95–132.CrossRef
go back to reference Lemaire, P., & Lecacheur, M. (2002). Children’s strategies in computational estimation. Journal of Experimental Child Psychology, 82, 281–304.CrossRefPubMed Lemaire, P., & Lecacheur, M. (2002). Children’s strategies in computational estimation. Journal of Experimental Child Psychology, 82, 281–304.CrossRefPubMed
go back to reference Lemaire, P., & Lecacheur, M. (2010). Strategy switch costs in arithmetic problem solving. Memory and Cognition, 38(3), 322–332.CrossRefPubMed Lemaire, P., & Lecacheur, M. (2010). Strategy switch costs in arithmetic problem solving. Memory and Cognition, 38(3), 322–332.CrossRefPubMed
go back to reference Lemaire, P., Lecacheur, M., & Farioli, F. (2000). Children’s strategy use in computational estimation. Canadian Journal of Experimental Psychology, 54(2), 141–148.CrossRefPubMed Lemaire, P., Lecacheur, M., & Farioli, F. (2000). Children’s strategy use in computational estimation. Canadian Journal of Experimental Psychology, 54(2), 141–148.CrossRefPubMed
go back to reference Lemaire, P., & Siegler, R. (1995). Four aspects of strategic change: contributions to children’s learning of multiplication. Journal of Experimental Psychology: General, 124(1), 83–97.CrossRef Lemaire, P., & Siegler, R. (1995). Four aspects of strategic change: contributions to children’s learning of multiplication. Journal of Experimental Psychology: General, 124(1), 83–97.CrossRef
go back to reference Logan, G. (1988). Toward an instance theory of automatization. Psychological Review, 91, 295–327.CrossRef Logan, G. (1988). Toward an instance theory of automatization. Psychological Review, 91, 295–327.CrossRef
go back to reference Lyons, I. M., Ansari, D., & Beilock, S. L. (2015a). Qualitatively different coding of symbolic and nonsymbolic numbers in the human brain. Human Brain Mapping, 36(2), 475–488.CrossRefPubMed Lyons, I. M., Ansari, D., & Beilock, S. L. (2015a). Qualitatively different coding of symbolic and nonsymbolic numbers in the human brain. Human Brain Mapping, 36(2), 475–488.CrossRefPubMed
go back to reference Lyons, I. M., Nuerk, H. C., & Ansari, D. (2015b). Rethinking the implications of numerical ratio effects for understanding the development of representational precision and numerical processing across formats. Lyons, I. M., Nuerk, H. C., & Ansari, D. (2015b). Rethinking the implications of numerical ratio effects for understanding the development of representational precision and numerical processing across formats.
go back to reference McEldoon, K. L., Durkin, K. L., & Rittle-Johnson, B. (2013). Is self-explanation worth the time? A comparison to additional practice. British Journal of Educational Psychology, 83(4), 615–632.CrossRefPubMed McEldoon, K. L., Durkin, K. L., & Rittle-Johnson, B. (2013). Is self-explanation worth the time? A comparison to additional practice. British Journal of Educational Psychology, 83(4), 615–632.CrossRefPubMed
go back to reference Merkley, R., & Ansari, D. (2010). Using eye tracking to study numerical cognition: the case of the ratio effect. Experimental Brain Research, 206(4), 455–460.CrossRefPubMed Merkley, R., & Ansari, D. (2010). Using eye tracking to study numerical cognition: the case of the ratio effect. Experimental Brain Research, 206(4), 455–460.CrossRefPubMed
go back to reference Moeller, K., Fischer, M., Nuerk, H., & Willmes, K. (2009). Sequential or parallel decomposed processing of two-digit numbers? Evidence from eye-tracking. Quarterly Journal of Experimental Psychology, 62(2), 323–334.CrossRef Moeller, K., Fischer, M., Nuerk, H., & Willmes, K. (2009). Sequential or parallel decomposed processing of two-digit numbers? Evidence from eye-tracking. Quarterly Journal of Experimental Psychology, 62(2), 323–334.CrossRef
go back to reference Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520.CrossRefPubMed Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520.CrossRefPubMed
go back to reference Pinhas, M., Pothos, E. M., & Tzelgov, J. (2013). Zooming in and out from the mental number line: evidence for a number range effect. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39(3), 972–976.CrossRefPubMed Pinhas, M., Pothos, E. M., & Tzelgov, J. (2013). Zooming in and out from the mental number line: evidence for a number range effect. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39(3), 972–976.CrossRefPubMed
go back to reference Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422.CrossRefPubMed Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422.CrossRefPubMed
go back to reference Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 1457–1506.CrossRefPubMed Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 1457–1506.CrossRefPubMed
go back to reference Rehder, B., & Hoffman, A. B. (2005). Eyetracking and selective attention in category learning. Cognitive Psychology, 51(1), 1–41.CrossRefPubMed Rehder, B., & Hoffman, A. B. (2005). Eyetracking and selective attention in category learning. Cognitive Psychology, 51(1), 1–41.CrossRefPubMed
go back to reference Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh: Psychology Software Tools Inc. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh: Psychology Software Tools Inc.
go back to reference Siegler, R. S. (1996). Emerging minds. New York: Oxford University Press. Siegler, R. S. (1996). Emerging minds. New York: Oxford University Press.
go back to reference Siegler, R. S., & Booth, J. (2005). Development of numerical estimation: a review. In J. Campbell (Ed.), Handbook of mathematical cognition (pp. 197–212). New York: Psychology Press. Siegler, R. S., & Booth, J. (2005). Development of numerical estimation: a review. In J. Campbell (Ed.), Handbook of mathematical cognition (pp. 197–212). New York: Psychology Press.
go back to reference Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: testing predictions of ASCM via the choice/no choice method. Journal of Experimental Psychology: General, 126, 71–92.CrossRef Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: testing predictions of ASCM via the choice/no choice method. Journal of Experimental Psychology: General, 126, 71–92.CrossRef
go back to reference Siegler, R. S., & Shrager, J. (1984). A model of strategy choice. In C. Sophian (Ed.), Origins of cognitive skills (pp. 229–293). Hillsdale: Erlbaum. Siegler, R. S., & Shrager, J. (1984). A model of strategy choice. In C. Sophian (Ed.), Origins of cognitive skills (pp. 229–293). Hillsdale: Erlbaum.
go back to reference Smith-Chant, B. L., & LeFevre, J. (2003). Doing as they are told and telling it like it is: Self-reports in mental arithmetic. Memory & Cognition, 31(4), 516–528.CrossRef Smith-Chant, B. L., & LeFevre, J. (2003). Doing as they are told and telling it like it is: Self-reports in mental arithmetic. Memory & Cognition, 31(4), 516–528.CrossRef
go back to reference Suppes, P. (1990). Eye-movement models for arithmetic and reading performance. Eye Movements and Their Role in Visual and Cognitive Processes, 4, 455–477. Suppes, P. (1990). Eye-movement models for arithmetic and reading performance. Eye Movements and Their Role in Visual and Cognitive Processes, 4, 455–477.
go back to reference Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: comparison and priming effects in numerical and nonnumerical orders. Psychonomic Bulletin and Review, 15(2), 419–425.CrossRefPubMed Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: comparison and priming effects in numerical and nonnumerical orders. Psychonomic Bulletin and Review, 15(2), 419–425.CrossRefPubMed
Metagegevens
Titel
Tracking practice effects in computation estimation
Auteurs
Dana Ganor-Stern
Nilly Weiss
Publicatiedatum
09-11-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2016
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0720-7