TODO: Skip to main content
Top
Gepubliceerd in:

31-05-2018 | Original Paper

Statistical Learning is Associated with Autism Symptoms and Verbal Abilities in Young Children with Autism

Auteurs: Rebecca M. Jones, Thaddeus Tarpey, Amarelle Hamo, Caroline Carberry, Gijs Brouwer, Catherine Lord

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 10/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Statistical learning-extracting regularities in the environment-may underlie complex social behavior. 124 children, 56 with autism and 68 typically developing, ages 2–8 years, completed a novel visual statistical learning task on an iPad. Averaged together, children with autism demonstrated less learning on the task compared to typically developing children. However, multivariate classification analyses characterized individual behavior patterns, and demonstrated a subset of children with autism had similar learning patterns to typically developing children and that subset of children had less severe autism symptoms. Therefore, statistically averaging data resulted in missing critical heterogeneity. Variability in statistical learning may help to understand differences in autism symptoms across individuals and could be used to tailor and inform treatment decisions.
Bijlagen
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Literatuur
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Metagegevens
Titel
Statistical Learning is Associated with Autism Symptoms and Verbal Abilities in Young Children with Autism
Auteurs
Rebecca M. Jones
Thaddeus Tarpey
Amarelle Hamo
Caroline Carberry
Gijs Brouwer
Catherine Lord
Publicatiedatum
31-05-2018
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 10/2018
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-018-3625-7