Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2015

12-11-2014 | Original Article

Facilitation and interference during the preparation of bimanual movements: contributions from starting locations, movement amplitudes, and target locations

Auteurs: Jarrod Blinch, Brendan D. Cameron, Ian M. Franks, Mark G. Carpenter, Romeo Chua

Gepubliceerd in: Psychological Research | Uitgave 6/2015

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Symmetric, target-directed, bimanual movements take less time to prepare than asymmetric movements (Diedrichsen et al. in Cerebral Cortex 16(12):1729–1738, 2006; Heuer and Klein in Psychol Res 70(4):229–244, 2006b). The preparation savings for symmetric movements may be related to the specification of symmetric amplitudes, target locations, or both. The goals of this study were to determine which symmetric movement parameters facilitate the preparation of bimanual movements and to compare the size of the facilitation for different parameters. Thirty participants performed bimanual reaching movements that varied in terms of the symmetry/asymmetry of starting locations, movement amplitudes, and target locations. Reaction time savings were examined by comparing movements that had one symmetric parameter (and two asymmetric parameters) to movements with all asymmetric parameters. We observed significant savings (~10 ms) for movements with symmetric amplitudes and movements with symmetric target locations. Reaction time costs were examined by comparing movements that had two asymmetric parameters (and one symmetric parameter) to movements with all symmetric parameters. We observed significant reaction time costs (~13 ms) for all movements with asymmetric amplitudes. These results suggest that movement preparation is facilitated when amplitudes or target locations are symmetric and that movement preparation suffers interference when amplitudes are asymmetric. The relative importance of the three parameters to movement preparation, from most to least important, is movement amplitudes, target locations, and then starting locations. Interference with asymmetric amplitudes or target locations may be caused by cross-talk between concurrent processes of parameter specification during response programming.
Voetnoten
1
Statistically, it does not make a difference whether we analyse the RT savings [(SaT, sAT, SAt)—SAT] or the RTs (SaT, sAT, SAt). Subtracting SAT from the RTs to calculate the RT savings affects the participant variance but neither the treatment variance nor the error variance. The results of these analyses are identical because repeated measures ANOVAs disregard the participant variance. The variances that are used are the treatment and error variances and these are identical in both calculations. Therefore, analysis of the RTs allowed us to make inferences about the relative RT savings.
 
Literatuur
go back to reference Blinch, J., Cameron, B. D., Cressman, E. K., Franks, I. M., Carpenter, M. G., & Chua, R. (2014). Comparing movement preparation of unimanual, bimanual symmetric, and bimanual asymmetric movements. Experimental Brain Research, 232(3), 947–955.CrossRefPubMed Blinch, J., Cameron, B. D., Cressman, E. K., Franks, I. M., Carpenter, M. G., & Chua, R. (2014). Comparing movement preparation of unimanual, bimanual symmetric, and bimanual asymmetric movements. Experimental Brain Research, 232(3), 947–955.CrossRefPubMed
go back to reference Blinch, J., Franks, I. M., Chua, R. (2013). Eliminating the preparation cost for bimanual asymmetric movements. Poster presented at the biannual meeting of Progress in Motor Control, Montreal, QC. Blinch, J., Franks, I. M., Chua, R. (2013). Eliminating the preparation cost for bimanual asymmetric movements. Poster presented at the biannual meeting of Progress in Motor Control, Montreal, QC.
go back to reference Diedrichsen, J., Grafton, S., Albert, N., Hazeltine, E., & Ivry, R. B. (2006). Goal-selection and movement-related conflict during bimanual reaching movements. Cerebral Cortex, 16(12), 1729–1738.CrossRefPubMed Diedrichsen, J., Grafton, S., Albert, N., Hazeltine, E., & Ivry, R. B. (2006). Goal-selection and movement-related conflict during bimanual reaching movements. Cerebral Cortex, 16(12), 1729–1738.CrossRefPubMed
go back to reference Diedrichsen, J., Hazeltine, E., Kennerley, S., & Ivry, R. B. (2001). Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychological Science, 12(6), 493–498.CrossRefPubMed Diedrichsen, J., Hazeltine, E., Kennerley, S., & Ivry, R. B. (2001). Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychological Science, 12(6), 493–498.CrossRefPubMed
go back to reference Favilla, M. (1996). Reaching movements: programming time course is independent of choice number. NeuroReport, 7(15–17), 2629–2634.CrossRefPubMed Favilla, M. (1996). Reaching movements: programming time course is independent of choice number. NeuroReport, 7(15–17), 2629–2634.CrossRefPubMed
go back to reference Franz, E. A., & McCormick, R. (2010). Conceptual unifying constraints override sensorimotor interference during anticipatory control of bimanual actions. Experimental Brain Research, 205(2), 273–282.CrossRefPubMed Franz, E. A., & McCormick, R. (2010). Conceptual unifying constraints override sensorimotor interference during anticipatory control of bimanual actions. Experimental Brain Research, 205(2), 273–282.CrossRefPubMed
go back to reference Franz, E. A., Zelaznik, H. N., Swinnen, S. S., & Walter, C. (2001). Spatial conceptual influences on the coordination of bimanual actions: when a dual task becomes a single task. Journal of Motor Behavior, 33(1), 103–112.CrossRefPubMed Franz, E. A., Zelaznik, H. N., Swinnen, S. S., & Walter, C. (2001). Spatial conceptual influences on the coordination of bimanual actions: when a dual task becomes a single task. Journal of Motor Behavior, 33(1), 103–112.CrossRefPubMed
go back to reference Heuer, H. (1986). Intermanual interactions during programming of finger movements: Transient effects of ‘homologous coupling’. In H. Heuer & C. Fromm (Eds.), Generation and modulation of action patterns (pp. 87–101). Berlin: Springer.CrossRef Heuer, H. (1986). Intermanual interactions during programming of finger movements: Transient effects of ‘homologous coupling’. In H. Heuer & C. Fromm (Eds.), Generation and modulation of action patterns (pp. 87–101). Berlin: Springer.CrossRef
go back to reference Heuer, H. (1993). Structural constraints on bimanual movements. Psychological Research, 55(2), 83–98.CrossRefPubMed Heuer, H. (1993). Structural constraints on bimanual movements. Psychological Research, 55(2), 83–98.CrossRefPubMed
go back to reference Heuer, H. (2006). Simultaneous specification of amplitudes and directions of bimanual reversal movements. Journal of Motor Behaviour, 38(4), 285–298.CrossRef Heuer, H. (2006). Simultaneous specification of amplitudes and directions of bimanual reversal movements. Journal of Motor Behaviour, 38(4), 285–298.CrossRef
go back to reference Heuer, H., & Klein, W. (2006a). Intermanual interactions related to movement amplitudes and endpoint locations. Journal of Motor Behavior, 38(2), 126–138.CrossRefPubMed Heuer, H., & Klein, W. (2006a). Intermanual interactions related to movement amplitudes and endpoint locations. Journal of Motor Behavior, 38(2), 126–138.CrossRefPubMed
go back to reference Heuer, H., & Klein, W. (2006b). The influence of movement cues on intermanual interactions. Psychological Research, 70(4), 229–244.CrossRefPubMed Heuer, H., & Klein, W. (2006b). The influence of movement cues on intermanual interactions. Psychological Research, 70(4), 229–244.CrossRefPubMed
go back to reference Heuer, H., & Klein, W. (2006c). The modulation of intermanual interactions during the specification of the directions of bimanual movements. Experimental Brain Research, 169(2), 162–181.CrossRefPubMed Heuer, H., & Klein, W. (2006c). The modulation of intermanual interactions during the specification of the directions of bimanual movements. Experimental Brain Research, 169(2), 162–181.CrossRefPubMed
go back to reference Heuer, H., Spijkers, W., Kleinsorge, T., van der Loo, H., & Steglich, C. (1998). The time course of cross-talk during the simultaneous specification of movement amplitudes. Experimental Brain Research, 118(3), 381–392.CrossRefPubMed Heuer, H., Spijkers, W., Kleinsorge, T., van der Loo, H., & Steglich, C. (1998). The time course of cross-talk during the simultaneous specification of movement amplitudes. Experimental Brain Research, 118(3), 381–392.CrossRefPubMed
go back to reference Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1), 11–26.CrossRef Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1), 11–26.CrossRef
go back to reference Huynh, H., & Feldt, L. S. (1976). Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1(1), 69–82.CrossRef Huynh, H., & Feldt, L. S. (1976). Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1(1), 69–82.CrossRef
go back to reference Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45(3), 188–196.CrossRefPubMed Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45(3), 188–196.CrossRefPubMed
go back to reference Kelso, J. A., Southard, D. L., & Goodman, D. (1979). On the coordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 229–238.PubMed Kelso, J. A., Southard, D. L., & Goodman, D. (1979). On the coordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 229–238.PubMed
go back to reference Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009). Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy! Experimental Brain Research, 193(1), 129–136.CrossRefPubMed Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009). Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy! Experimental Brain Research, 193(1), 129–136.CrossRefPubMed
go back to reference Marteniuk, R. G., MacKenzie, C. L., & Baba, D. M. (1984). Bimanual movement control: Information processing and interaction effects. Quarterly Journal of Experimental Psychology, 36(A), 335–365.CrossRef Marteniuk, R. G., MacKenzie, C. L., & Baba, D. M. (1984). Bimanual movement control: Information processing and interaction effects. Quarterly Journal of Experimental Psychology, 36(A), 335–365.CrossRef
go back to reference Spijkers, W., Heuer, H., Kleinsorge, T., & van der Loo, H. (1997). Preparation of bimanual movements with same and different amplitudes: specification interference as revealed by reaction time. Acta Psychologica, 96(3), 207–227.CrossRef Spijkers, W., Heuer, H., Kleinsorge, T., & van der Loo, H. (1997). Preparation of bimanual movements with same and different amplitudes: specification interference as revealed by reaction time. Acta Psychologica, 96(3), 207–227.CrossRef
go back to reference Stelmach, G. E., Amrhein, P. C., & Goggin, N. L. (1988). Age differences in bimanual coordination. Journal of Gerontology, 43(1), 18–23.CrossRef Stelmach, G. E., Amrhein, P. C., & Goggin, N. L. (1988). Age differences in bimanual coordination. Journal of Gerontology, 43(1), 18–23.CrossRef
go back to reference Sternberg, S. (1969). The discovery of processing stages: Extension of Donders’ method. In W. G. Koster (Ed.), Attention and Performance II (pp. 276-315). Amsterdam: North-Holland. Sternberg, S. (1969). The discovery of processing stages: Extension of Donders’ method. In W. G. Koster (Ed.), Attention and Performance II (pp. 276-315). Amsterdam: North-Holland.
go back to reference Swinnen, S. P., Lee, T. D., Verschueren, S., Serrien, D. J., & Bogaerds, H. (1997). Interlimb coordination: learning and transfer under different feedback conditions. Human Movement Science, 16(6), 749–785.CrossRef Swinnen, S. P., Lee, T. D., Verschueren, S., Serrien, D. J., & Bogaerds, H. (1997). Interlimb coordination: learning and transfer under different feedback conditions. Human Movement Science, 16(6), 749–785.CrossRef
go back to reference Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1), 18–25.CrossRefPubMed Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1), 18–25.CrossRefPubMed
go back to reference Weigelt, M. (2007). Re-examining structural constraints on the initiation of bimanual movements: the roles of starting locations, movement amplitudes, and target locations. Human Movement Science, 26(2), 212–225.CrossRefPubMed Weigelt, M. (2007). Re-examining structural constraints on the initiation of bimanual movements: the roles of starting locations, movement amplitudes, and target locations. Human Movement Science, 26(2), 212–225.CrossRefPubMed
go back to reference Weigelt, C., & Cardoso de Oliveira, S. (2003). Visuomotor transformations affect bimanual coupling. Experimental Brain Research, 148(4), 439–450.PubMed Weigelt, C., & Cardoso de Oliveira, S. (2003). Visuomotor transformations affect bimanual coupling. Experimental Brain Research, 148(4), 439–450.PubMed
go back to reference Wenderoth, N., & Weigelt, M. (2009). Visual cues influence motor coordination: behavioral results and potential neural mechanisms mediating perception-action coupling and response selection. Progress in Brain Research, 174, 179–188.CrossRefPubMed Wenderoth, N., & Weigelt, M. (2009). Visual cues influence motor coordination: behavioral results and potential neural mechanisms mediating perception-action coupling and response selection. Progress in Brain Research, 174, 179–188.CrossRefPubMed
go back to reference White, O., & Diedrichsen, J. (2010). Responsibility assignment in redundant systems. Current Biology, 20(14), 1290–1295.CrossRefPubMed White, O., & Diedrichsen, J. (2010). Responsibility assignment in redundant systems. Current Biology, 20(14), 1290–1295.CrossRefPubMed
go back to reference Wright, C. E., Marino, V. F., Belovsky, S. A., & Chubb, C. (2007). Visually guided, aimed movements can be unaffected by stimulus-response uncertainty. Experimental Brain Research, 179(3), 475–496.CrossRefPubMed Wright, C. E., Marino, V. F., Belovsky, S. A., & Chubb, C. (2007). Visually guided, aimed movements can be unaffected by stimulus-response uncertainty. Experimental Brain Research, 179(3), 475–496.CrossRefPubMed
Metagegevens
Titel
Facilitation and interference during the preparation of bimanual movements: contributions from starting locations, movement amplitudes, and target locations
Auteurs
Jarrod Blinch
Brendan D. Cameron
Ian M. Franks
Mark G. Carpenter
Romeo Chua
Publicatiedatum
12-11-2014
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2015
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-014-0624-y

Andere artikelen Uitgave 6/2015

Psychological Research 6/2015 Naar de uitgave