Skip to main content
Log in

Structural constraints on bimanual movements

  • Published:
Psychological Research Aims and scope Submit manuscript

Summary

A theoretical framework is outlined, according to which structural constraints on bimanual movements can at least in part be understood as coupling between parameters of generalized motor programs. This framework provides a conceptual link between reaction-time data from experiments with bimanual responses, successive unimanual responses, and choice between left-hand and right-hand responses on the one hand and performance data obtained with concurrently performed continuous movements or sequences of discrete responses on the other. On the basis of data obtained with different methods for the study of intermanual interactions, a distinction is drawn between steady-state and transient constraints, and the hypothesis that the tendency to coactivate homologous muscles originates from a transient coupling of program parameters is applied to a variety of observations on performance in different tasks. Finally, the notion of transient constraints is applied to other types of intermanual interdependencies and to interpersonal coordination; the possible emergence of transient constraints from steady-state constraints through progressive development of inhibitory pathways in childhood is discussed, as is the potential biological significance of transient constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernethy, B., & Sparrow, W. A. (1992). The rise and fall of dominant paradigms in motor behaviour research. In J. J. Summers (Ed.), Approaches to the study of motor control and learning (pp. 3–45). Amsterdam: North-Holland.

    Google Scholar 

  • Basmajian, J. V. (1977). Motor learning and control: A working hypothesis. Archives of Physical Medicine and Rehabilitation, 58, 38–41.

    Google Scholar 

  • Basmajian, J. V. (1978). Muscles alive. Their functions revealed by electromyography (4th Ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Bullock, D., & Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review, 95, 49–90.

    Google Scholar 

  • Bullock, D., & Grossberg, S. (1991a). Adaptive neural networks for control of movement trajectories invariant under speed and force resealing. Human Movement Science, 10, 3–53.

    Google Scholar 

  • Bullock, D., & Grossberg, S. (1991b). Reply to comments on “Adaptive neural networks for control of movement trajectories invariant under speed and force resealing”. Human Movement Science, 10, 133–157.

    Google Scholar 

  • Burns, D. (1968). The uncertain nervous system. London: Arnold.

    Google Scholar 

  • Chang, P., & Hammond, G. R. (1987). Mutual interactions between speech and finger movements. Journal of Motor Behavior, 19, 265–274.

    Google Scholar 

  • Cohen, L. (1971). Synchronous bimanual movements performed by homologous and nonhomologous muscles. Perceptual and Motor Skills, 32, 639–644.

    Google Scholar 

  • Corcos, D. M. (1984). Two-handed movement control. Research Quarterly for Exercise and Sport, 55, 117–122.

    Google Scholar 

  • Cruse, H. (1986). Constraints for joint angle control of the human arm. Biological Cybernetics, 54, 125–132.

    Google Scholar 

  • Cruse, H., Dean, J., Heuer, H., & Schmidt, R. A. (1990). Utilization of sensory information for motor control. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action. Current approaches (pp. 43–79). Berlin: Springer.

    Google Scholar 

  • Decety, J., & Ingvar, H. (1990). Brain structures participating in mental simulation of motor behavior: A neuropsychological interpretation. Acta Psychologica, 73, 13–34.

    Google Scholar 

  • Drill, R. (1933). Der Hammersehlag. Neue Psychologische Studien, 9, 139–208.

    Google Scholar 

  • Drillis, R. J. (1959). The use of gliding cyclograms in biomechanical analysis of movement. Human Factors, 1(2), 1–11.

    Google Scholar 

  • Fowler, B., Duck, T., Mosher, M., & Mathieson, B. (1991). The coordination of bimanual aiming movements: Evidence for progressive desynchronization. Quarterly Journal of Experimental Psychology, 43A, 205–221.

    Google Scholar 

  • Ghez, C., Hening, W., & Favilla, M. (1990). Parallel interacting channels in the initiation and specification of motor response features. In M. Jeannerod (Ed.), Attention and performance XIII (pp. 265–293). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Grice, G. R., Nullmeyer, R., & Spiker, V. A. (1977). Application of variable criterion theory to choice reaction time. Perception & Psychophysics, 22, 431–449.

    Google Scholar 

  • Gunkel, M. (1962). Über relative Koordination bei willkürlichen menschlichen Gliederbewegungen. Pfl ügers Archiv für die gesamte Physiologie, 275, 472–477.

    Google Scholar 

  • Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.

    Google Scholar 

  • Heuer, H. (1982a). Binary choice reaction time as a criterion of motor equivalence. Acta Psychologica, 50, 35–47.

    Google Scholar 

  • Heuer, H. (1982b). Binary choice reaction time as a criterion of motor equivalence: Further evidence. Acta Psychologica, 50, 48–60

    Google Scholar 

  • Heuer, H. (1982c). Choice between finger movements of different and identical forms: The effect of relative signal frequency. Psychological Research, 44, 323–342.

    Google Scholar 

  • Heuer, H. (1984). Binary choice reaction time as a function of the relationship between durations and forms of responses. Journal of MotorBehavior, 16, 392–404.

    Google Scholar 

  • Heuer, H. (1985). Intermanual interactions during simultaneous execution and programming of finger movements. Journal of Motor Behavior, 17, 335–354.

    Google Scholar 

  • Heuer, H. (1986a). Intermanual interactions during programming of aimed movements: Converging evidence for common and specific parameters of control. Psychological Research, 48, 37–46.

    Google Scholar 

  • Heuer, H. (1986b). Intermanual interactions during programming of finger movements: Transient effects of “homologous coupling”. In H. Heuer & C. Fromm (Eds.), Generation and modulation of action patterns (pp. 87–101). Berlin: Springer.

    Google Scholar 

  • Heuer, H. (1987). Visual discrimination and response programming. Psychological Research, 49, 91–98.

    Google Scholar 

  • Heuer, H. (1989). A multiple-representations' approach to mental practice of motor skills. In B. Kirkcaldy (Ed.), Normalities and abnormalities in human movement (pp. 36–57). Basel: Karger.

    Google Scholar 

  • Heuer, H. (1990a). Rapid responses with the left or right hand: Response-response compatibility effects due to intermanual interactions. In: R. W. Proctor & T. G. Reeve (Eds.), Stimulus-response compatibility. An integrated perspective. Amsterdam: North-Holland.

    Google Scholar 

  • Heuer, H. (1990b). Psychomotorik. In H. Spada (Ed.), Lehrbuch AllgemeinePsychologie (pp. 495–559). Bern: Huber.

    Google Scholar 

  • Heuer, H. (1991a). Invariant relative timing in motor-program theory. In J. Fagard & P. H. Wolff (Eds.), The development of timing control and temporal organization in coordinated action. Invariant relative timing, rhythms, and coordination (pp. 37–68). Amsterdam: NorthHolland.

    Google Scholar 

  • Heuer, H. (1991b). Some characteristics of VITE. Human Movement Science, 10, 55–64.

    Google Scholar 

  • Heuer, H. (in press). Coordination. In H. Heuer & S. W. Keele (Eds.), Handbook of perception and action: Motor skills. New York: Academic Press.

  • Hogan, N. (1984). An organizing principle for a class of voluntary movements. Journal of Neuroscience, 4, 2745–2754.

    Google Scholar 

  • Kalveram, K.-Th. (1991a). Pattern generating and reflex-like processes controlling aiming movements in the presence of inertia, damping and gravity. Biological Cybernetics, 64, 413–419.

    Google Scholar 

  • Kalveram, K.-Th. (1991b). Controlling the dynamics of a two-jointed arm by central patterning and reflex-like processing. A two-stage hybrid model. Biological Cybernetics, 65, 65–71.

    Google Scholar 

  • Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology: Regulatory, Integrative, and Comparative, 246, R1000-R1004.

    Google Scholar 

  • Kelso, J. A. S., & Scholz, J. P. (1985). Cooperative phenomena in biological motion. In H. Haken (Ed.), Complex systems: Operational approaches in neurobiology, physical systems and computers (pp. 124–149). Berlin: Springer.

    Google Scholar 

  • Kelso, J. A. S., & Schöner, G. (1988). Self-organization of coordinatioe movement patterns. Human Movement Science, 7, 27–46.

    Google Scholar 

  • Kelso, J. A. S., Southard, D. L., & Goodman, D. (1979). On the coordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5, 229–238.

    Google Scholar 

  • Kelso, J. A. S., Tuller, B., & Harris, K. S. (1983). A “dynamic pattern” perspective on the control and coordination of movement. In P. F. MacNeilage (Ed.), The production of speech (pp. 137–173). Berlin: Springer.

    Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd Ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • MacKay, D. G., & Soderberg, G. A. (1971). Homologous intrusions: An analogue of linguistic blends. Perceptual and Motor Skills, 32, 645–646.

    Google Scholar 

  • Marteniuk, R. G., & MacKenzie, C. L. (1980). A preliminary theory of two-hand coordinated control. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 185–197). Amsterdam: NorthHolland.

    Google Scholar 

  • McCormick, E. J. (1970). Human factors engineering (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Meijer, O. G., & Roth, K., Eds. (1988). Complex movement behavior. “The” motor-action controversy. Amsterdam: North-Holland.

    Google Scholar 

  • Miller, J. O. (1988). Discrete and continuous models of human information processing: Theoretical distinctions and empirical results. Acta Psychologica, 67, 191–257.

    Google Scholar 

  • Nelson, W. L. (1983). Physical principles for economies of skilled movements. Biological Cybernetics, 46, 135–147.

    Google Scholar 

  • Newland, D. E. (1986). An introduction to random vibrations and spectral analysis (2nd ed.). New York: Longman.

    Google Scholar 

  • Norrie, M. L. (1964). Timing of two simultaneous movements of arms and legs. Research Quarterly, 35, 511–522.

    Google Scholar 

  • Norrie, M. L. (1967). Effects of unequal distances and handedness on timing patterns for simultaneous movements of arms and legs. Research Quarterly, 38, 241–246.

    Google Scholar 

  • Peters, M. (1977). Simultaneous performance of two motor activities: The factor of timing. Neuropsychologia, 15, 461–465.

    Google Scholar 

  • Peterson, J. R. (1965). Response-response compatibility effects in a two-hand pointing task. Human Factors, 7, 231–236.

    Google Scholar 

  • Rabbitt, P. M. A., Vyas, S. M., & Fearnley, S. (1975). Programming sequences of complex responses. In P. M. A. Rabbitt & S. Dornic (Eds.), Attention and performance V. London: Academic Press.

    Google Scholar 

  • Rosenbaum, D. A. (1985). Motor programming: A review and a scheduling theory. In H. Heuer, U. Kleinbeck, & K.-H. Schmidt (Eds.), Motor behavior. Programming, control, and acquisition (pp. 1–33). Berlin: Springer.

    Google Scholar 

  • Rosenbaum, D. A., & Kornblum, S. (1982). A priming method for investigating the selection of motor responses. Acta Psychologica, 51, 223–243.

    Google Scholar 

  • Saltzman, E. (1986). Task dynamic coordination of the speech articulators: A preliminary model. In H. Heuer & C. Fromm (Eds.), Generation and modulation of action patterns (pp. 129–144). Berlin: Springer.

    Google Scholar 

  • Saltzman, E., & Kelso, J. A. S. (1987). Skilled actions: A task-dynamic approach. Psychological Review, 94, 84–106.

    Google Scholar 

  • Sanders, A. F. (1990). Issues and trends in the debate on discrete vs. continuous processing of information. Acta Psychologica, 74, 123–167.

    Google Scholar 

  • Schmidt, R. A. (1980). On the theoretical status of time in motorprogram representations. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 145–165). Amsterdam: NorthHolland.

    Google Scholar 

  • Schmidt, R. A. (1985). The search for invariance in skilled movement behavior. Research Quarterly for Exercise and Sport, 56, 188–200.

    Google Scholar 

  • Schmidt, R. A., Zelaznik, H. N., Hawkins, B., Frank, J. S., & Quinn, J. T. (1979). Motor-output variability. A theory for the accuracy of rapid motor acts. Psychological Review, 86, 415–451.

    Google Scholar 

  • Schmidt, R. C., Carello, C., & Turvey, M. T. (1990). Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of Experimental Psychology: Human Perception and Performance, 16, 227–247.

    Google Scholar 

  • Scholz, J. P., & Kelso, J. A. S. (1989). A quantitative approach to understanding the formation and change of coordinated movement patterns. Journal of Motor Behavior, 21, 122–144.

    Google Scholar 

  • Schöner, G. (1990). A dynamic theory of coordination of discrete movement. Biological Cybernetics, 63, 257–270.

    Google Scholar 

  • Schöner, G., & Kelso, J. A. S. (1988a). A synergetic theory of environmentally-specified and learned patterns of movement coordination. I: Relative phase dynamics. Biological Cybernetics, 58, 71–80.

    Google Scholar 

  • Schöner, G., & Kelso, J. A. S. (1988b). A synergetic theory of environmentally-specified and learned patterns of movement coordination. II: Component oscillator dynamics. Biological Cybernetics, 58, 81–89.

    Google Scholar 

  • Summers, J. J. (1989). Motor programs. In D. H. Holding (Ed.), Human skills (2nd ed.) (pp. 49–69). Chichester: Wiley.

    Google Scholar 

  • Summers, J. J., Bell, R., & Burns, B. D. (1989). Perceptual and motor factors in the imitation of simple temporal patterns. Psychological Research, 51, 23–27.

    Google Scholar 

  • Swinnen, S., Walter, C. B., & Shapiro, D. C. (1988). The coordination of limb movements with different kinematic patterns. Brain and Cognition, 8, 326–347.

    Google Scholar 

  • Taniguchi, R., Nakamura, R., & Oshima, Y. (1977). Reaction time in simultaneous motions. Perceptual and Motor Skills, 44, 709–710.

    Google Scholar 

  • Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement: Minimum torque-change model. Biological Cybernetics, 61, 89–101.

    Google Scholar 

  • Vickers, D. (1979). Decision processes in visual perception. New York: Academic Press.

    Google Scholar 

  • Viviani, P. (1986). Do units of motor action really exist? In H. Heuer & C. Fromm (Eds.), Generation and modulation of action patterns(pp. 201–216). Berlin: Springer.

    Google Scholar 

  • von Hofsten, C. (1987). Catching. In H. Heuer & A. F. Sanders (Eds.), Perspectives on perception and action (pp. 33–46). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • von Holst, E. (1939). Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie, 42, 228–306.

    Google Scholar 

  • Wakelin, D. R. (1976). The role of the response in psychological refractoriness. Acta Psychologica, 40, 163–175.

    Google Scholar 

  • Wolff, P. H., Gunnoe, C. E., & Cohen, C. (1983). Associated movements as a measure of developmental age. Developmental Medicine and Child Neurology, 25, 417–429.

    Google Scholar 

  • Yamanishi, J., Kawato, M., & Suzuki, R. (1980). Two coupled oscillators as a model of the coordinated finger tapping by both hands. Biological Cybernetics, 37, 219–225.

    Google Scholar 

  • Zattara, M., & Bouisset, S. (1986). Chronometric analysis of the posturo-kinetic programming of volutary movement. Journal of Motor Behavior, 18, 215–223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of the work reported in this paper was done while I enjoyed the hospitality on the NIAS, Wassenaar (NL)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuer, H. Structural constraints on bimanual movements. Psychol. Res 55, 83–98 (1993). https://doi.org/10.1007/BF00419639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419639

Keywords

Navigation