Skip to main content
Top
Gepubliceerd in: Psychological Research 8/2023

20-04-2023 | Research

Contributions of transient and sustained reward to memory formation

Auteurs: Avery S. Gholston, Kyle E. Thurmann, Kimberly S. Chiew

Gepubliceerd in: Psychological Research | Uitgave 8/2023

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Reward benefits to memory formation have been robustly linked to dopaminergic activity. Despite the established characterization of dopaminergic mechanisms as operating at multiple timescales, potentially supporting distinct functional outcomes, the temporal dynamics by which reward might modulate memory encoding are just beginning to be investigated. In the present study, we leveraged a mixed block/event experimental design to disentangle transient and sustained reward influences on task engagement and subsequent recognition memory in an adapted monetary-incentive-encoding (MIE) paradigm. Across three behavioral experiments, transient and sustained reward modulation of item and context memory was probed, at both 24-h and ~ 15-min retention intervals, to investigate the importance of overnight consolidation. In general, we observed that transient reward was associated with enhanced item memory encoding, while sustained reward modulated response speed but did not appear to benefit subsequent recognition accuracy. Notably, reward effects on item memory performance and response speed were somewhat inconsistent across the three experiments, with suggestions that RT speeding might also be related to time on task, and we did not observe reward modulation of context memory performance or amplification of reward benefits to memory by overnight consolidation. Taken together, the observed pattern of behavior is consistent with potentially distinct roles for transient and sustained reward in memory encoding and cognitive performance and suggests that further investigation of the temporal dynamics of dopaminergic contributions to memory formation will advance the understanding of motivated memory.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
In addition to Experiment 1, we tested for significant correlations between errors and RTs in each incentive condition of the subsequently-described Experiment 2 and 3. The only significant correlation observed was between errors and RTs in the baseline condition of Experiment 2B. This suggests that differences in error rates and RTs specifically as a function of changes in incentive are not likely to be the product of systematic speed-accuracy tradeoff.
 
2
Testing for demographic differences across experiments: Race: χ2(12, N = 116) = 15.64, p = 0.21; Gender: χ2(6, N = 88) = 15.57, p = 0.02; Age: F(3,108) = 2.37, p = 0.07; Years of Education: F(3,108) = 3.81, p = 0.01. By pairwise comparisons, the effect on Gender was driven by differences between Experiment 2B (13 females, 7 males, 4 non-binary or declined to specify) and Experiment 3 (23 females, 7 males). By pairwise comparisons, the trend effect on Age was driven by differences between Experiment 1 (M = 20.7 years, SD = 3.26) and Experiment 2B (M = 19.1 years, SD = 1.12). By pairwise comparisons, the effect on Years of Education was driven by differences between Experiment 1 (M = 14.3 years, SD = 2.40) and 2B (M = 12.9 years, SD = 0.97) as well as Experiment 1 and Experiment 3 (M = 13.00, SD = 1.39). While these differences suggest some demographic variability across our experiments, they do not neatly account for a null effect of transient reward on memory accuracy in Experiment 2 versus Experiments 1 and 3.
 
3
In Experiment 2A and 2B combined, an average of 18.1 (SD = 7.4) context memory judgments (i.e., for correctly identified item hits) were conducted per incentive condition, and in Experiment 3 an average of 18.2 (SD = 7.3) context memory judgments were conducted per incentive condition (versus 40 item memory judgments per incentive condition in all three experiments).
 
4
In item memory recognition, previously-shown target stimuli were correctly endorsed as old (i.e., “hits”) at a proportion of ~ 0.5 as well. However, across all experiments, the proportion of hits was significantly greater than “false alarms” (novel stimuli at recognition that were incorrectly endorsed as old), indicating that item memory accuracy was greater than chance. No such opportunity for false alarms was available for context memory judgments.
 
Literatuur
go back to reference Ariel, R., & Castel, A. D. (2014). Eyes wide open: Enhanced pupil dilation when selectively studying important information. Experimental Brain Research, 232(1), 337–344.PubMedCrossRef Ariel, R., & Castel, A. D. (2014). Eyes wide open: Enhanced pupil dilation when selectively studying important information. Experimental Brain Research, 232(1), 337–344.PubMedCrossRef
go back to reference Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., … Green, P. (2018). Package ‘lme4’. Version, 1(17), 437. Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., … Green, P. (2018). Package ‘lme4’. Version, 1(17), 437.
go back to reference Beierholm, U., Guitart-Masip, M., Economides, M., Chowdhury, R., Düzel, E., Dolan, R., & Dayan, P. (2013). Dopamine modulates reward-related vigor. Neuropsychopharmacology, 38(8), 1495–1503.PubMedPubMedCentralCrossRef Beierholm, U., Guitart-Masip, M., Economides, M., Chowdhury, R., Düzel, E., Dolan, R., & Dayan, P. (2013). Dopamine modulates reward-related vigor. Neuropsychopharmacology, 38(8), 1495–1503.PubMedPubMedCentralCrossRef
go back to reference Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (berl), 199(3), 457–480.PubMedCrossRef Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (berl), 199(3), 457–480.PubMedCrossRef
go back to reference Boudewyn, M. A., Luck, S. J., Farrens, J. L., & Kappenman, E. S. (2018). How many trials does it take to get a significant ERP effect? It depends. Psychophysiology, 55(6), e13049.PubMedCrossRef Boudewyn, M. A., Luck, S. J., Farrens, J. L., & Kappenman, E. S. (2018). How many trials does it take to get a significant ERP effect? It depends. Psychophysiology, 55(6), e13049.PubMedCrossRef
go back to reference Bowen, H.J., Marchesi, M., & Kensinger, E. (2019). Reward motivation influences response bias on a recognition memory task. Bowen, H.J., Marchesi, M., & Kensinger, E. (2019). Reward motivation influences response bias on a recognition memory task.
go back to reference Bowen, Holly J, Gallant, S. N., & Moon, D. H. (2020). Influence of reward motivation on directed forgetting in younger and older adults. Frontiers in Psychology, 11. Bowen, Holly J, Gallant, S. N., & Moon, D. H. (2020). Influence of reward motivation on directed forgetting in younger and older adults. Frontiers in Psychology, 11.
go back to reference Bowyer, P. A., Humphreys, M. S., & Revelle, W. (1983). Arousal and recognition memory: The effects of impulsivity, caffeine and time on task. Personality and Individual Differences, 4(1), 41–49.CrossRef Bowyer, P. A., Humphreys, M. S., & Revelle, W. (1983). Arousal and recognition memory: The effects of impulsivity, caffeine and time on task. Personality and Individual Differences, 4(1), 41–49.CrossRef
go back to reference Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII (pp. 713–737). MIT Press. Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII (pp. 713–737). MIT Press.
go back to reference Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., & Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: challenges and opportunities. Cognitive, Affective and Behavioral Neuroscience, 14(2), 443–472.PubMedCrossRef Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., & Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: challenges and opportunities. Cognitive, Affective and Behavioral Neuroscience, 14(2), 443–472.PubMedCrossRef
go back to reference Breitenstein, C., Korsukewitz, C., Flöel, A., Kretzschmar, T., Diederich, K., & Knecht, S. (2006). Tonic dopaminergic stimulation impairs associative learning in healthy subjects. Neuropsychopharmacology, 31(11), 2552–2564.PubMedCrossRef Breitenstein, C., Korsukewitz, C., Flöel, A., Kretzschmar, T., Diederich, K., & Knecht, S. (2006). Tonic dopaminergic stimulation impairs associative learning in healthy subjects. Neuropsychopharmacology, 31(11), 2552–2564.PubMedCrossRef
go back to reference Busey, T. A., Tunnicliff, J., Loftus, G. R., & Loftus, E. F. (2000). Accounts of the confidence-accuracy relation in recognition memory. Psychonomic Bulletin and Review, 7(1), 26–48.PubMedCrossRef Busey, T. A., Tunnicliff, J., Loftus, G. R., & Loftus, E. F. (2000). Accounts of the confidence-accuracy relation in recognition memory. Psychonomic Bulletin and Review, 7(1), 26–48.PubMedCrossRef
go back to reference Castel, A. D. (2007). The adaptive and strategic use of memory by older adults: Evaluative processing and value-directed remembering. Psychology of Learning and Motivation, 48, 225–270.CrossRef Castel, A. D. (2007). The adaptive and strategic use of memory by older adults: Evaluative processing and value-directed remembering. Psychology of Learning and Motivation, 48, 225–270.CrossRef
go back to reference Chiew, K. S., & Adcock, R. A. (2019). Motivated memory: integrating cognitive and affective neuroscience. Cambridge Handbook of Motivation and Learning. Chiew, K. S., & Adcock, R. A. (2019). Motivated memory: integrating cognitive and affective neuroscience. Cambridge Handbook of Motivation and Learning.
go back to reference Chiew, K. S., & Bowen, H. J. (2022). Neurobiological mechanisms of selectivity in motivated memory. In A. Elliot (Ed.), Advances in motivation science. USA: Elsevier. Chiew, K. S., & Bowen, H. J. (2022). Neurobiological mechanisms of selectivity in motivated memory. In A. Elliot (Ed.), Advances in motivation science. USA: Elsevier.
go back to reference Chiew, K. S., & Braver, T. S. (2013). Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Frontioers Psychology, 4, 15. Chiew, K. S., & Braver, T. S. (2013). Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Frontioers Psychology, 4, 15.
go back to reference Chiew, K. S., & Braver, T. S. (2014). Dissociable influences of reward motivation and positive emotion on cognitive control. Cognitive, Affective and Behavioral Neuroscience, 14(2), 509–529.PubMedCrossRef Chiew, K. S., & Braver, T. S. (2014). Dissociable influences of reward motivation and positive emotion on cognitive control. Cognitive, Affective and Behavioral Neuroscience, 14(2), 509–529.PubMedCrossRef
go back to reference Chiew, K. S., Hashemi, J., Gans, L. K., Lerebours, L., Clement, N. J., Vu, M.-A.T., & Adcock, R. A. (2018). Motivational valence alters memory formation without altering exploration of a real-life spatial environment. PLoS ONE, 13, e0193506.PubMedPubMedCentralCrossRef Chiew, K. S., Hashemi, J., Gans, L. K., Lerebours, L., Clement, N. J., Vu, M.-A.T., & Adcock, R. A. (2018). Motivational valence alters memory formation without altering exploration of a real-life spatial environment. PLoS ONE, 13, e0193506.PubMedPubMedCentralCrossRef
go back to reference Chowdhury, R., Guitart-Masip, M., Bunzeck, N., Dolan, R. J., & Düzel, E. (2012). Dopamine modulates episodic memory persistence in old age. Journal of Neuroscience, 32(41), 14193–14204.PubMedCrossRef Chowdhury, R., Guitart-Masip, M., Bunzeck, N., Dolan, R. J., & Düzel, E. (2012). Dopamine modulates episodic memory persistence in old age. Journal of Neuroscience, 32(41), 14193–14204.PubMedCrossRef
go back to reference Clewett, D., & Murty, V. P. (2019). Echoes of emotions past: How neuromodulators determine what we recollect. Eneuro, 6(2). Clewett, D., & Murty, V. P. (2019). Echoes of emotions past: How neuromodulators determine what we recollect. Eneuro, 6(2).
go back to reference Clos, M., Bunzeck, N., & Sommer, T. (2019). Dopamine is a double-edged sword: Dopaminergic modulation enhances memory retrieval performance but impairs metacognition. Neuropsychopharmacology, 44(3), 555–563.PubMedCrossRef Clos, M., Bunzeck, N., & Sommer, T. (2019). Dopamine is a double-edged sword: Dopaminergic modulation enhances memory retrieval performance but impairs metacognition. Neuropsychopharmacology, 44(3), 555–563.PubMedCrossRef
go back to reference Cohen, M. S., Rissman, J., Hovhannisyan, M., Castel, A. D., & Knowlton, B. J. (2017). Free recall test experience potentiates strategy-driven effects of value on memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(10), 1581.PubMed Cohen, M. S., Rissman, J., Hovhannisyan, M., Castel, A. D., & Knowlton, B. J. (2017). Free recall test experience potentiates strategy-driven effects of value on memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(10), 1581.PubMed
go back to reference Copeland, W. E., McGinnis, E., Bai, Y., Adams, Z., Nardone, H., Devadanam, V., & Hudziak, J. J. (2021). Impact of COVID-19 pandemic on college student mental health and wellness. Journal of the American Academy of Child and Adolescent Psychiatry, 60(1), 134–141.PubMedCrossRef Copeland, W. E., McGinnis, E., Bai, Y., Adams, Z., Nardone, H., Devadanam, V., & Hudziak, J. J. (2021). Impact of COVID-19 pandemic on college student mental health and wellness. Journal of the American Academy of Child and Adolescent Psychiatry, 60(1), 134–141.PubMedCrossRef
go back to reference Corbett, B., Weinberg, L., & Duarte, A. (2017). The effect of mild acute stress during memory consolidation on emotional recognition memory. Neurobiology of Learning and Memory, 145, 34–44.PubMedPubMedCentralCrossRef Corbett, B., Weinberg, L., & Duarte, A. (2017). The effect of mild acute stress during memory consolidation on emotional recognition memory. Neurobiology of Learning and Memory, 145, 34–44.PubMedPubMedCentralCrossRef
go back to reference da Silva Castanheira, K., Sharp, M., & Otto, A. R. (2021). The impact of pandemic-related worry on cognitive functioning and risk-taking. PLoS ONE, 16(11), e0260061.PubMedPubMedCentralCrossRef da Silva Castanheira, K., Sharp, M., & Otto, A. R. (2021). The impact of pandemic-related worry on cognitive functioning and risk-taking. PLoS ONE, 16(11), e0260061.PubMedPubMedCentralCrossRef
go back to reference Elliott, B. L., Brewer, G. A., Zwaan, R., & Madan, C. (2019). Divided attention selectively impairs value-directed encoding. Collabra: Psychology, 5(1). Elliott, B. L., Brewer, G. A., Zwaan, R., & Madan, C. (2019). Divided attention selectively impairs value-directed encoding. Collabra: Psychology, 5(1).
go back to reference Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: Transient and sustained motivational effects. Frontiers in Human Neuroscience, 3, 4.PubMedPubMedCentralCrossRef Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: Transient and sustained motivational effects. Frontiers in Human Neuroscience, 3, 4.PubMedPubMedCentralCrossRef
go back to reference Engelmann, J. B., & Pessoa, L. (2014). Motivation sharpens exogenous spatial attention. Motivation Science., 1, 64.CrossRef Engelmann, J. B., & Pessoa, L. (2014). Motivation sharpens exogenous spatial attention. Motivation Science., 1, 64.CrossRef
go back to reference Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.PubMedCrossRef Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.PubMedCrossRef
go back to reference Floel, A., Garraux, G., Xu, B., Breitenstein, C., Knecht, S., Herscovitch, P., & Cohen, L. G. (2008). Levodopa increases memory encoding and dopamine release in the striatum in the elderly. Neurobiology of Aging, 29(2), 267–279.PubMedCrossRef Floel, A., Garraux, G., Xu, B., Breitenstein, C., Knecht, S., Herscovitch, P., & Cohen, L. G. (2008). Levodopa increases memory encoding and dopamine release in the striatum in the elderly. Neurobiology of Aging, 29(2), 267–279.PubMedCrossRef
go back to reference Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 41(1), 1–24.PubMedCrossRef Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 41(1), 1–24.PubMedCrossRef
go back to reference Gruber, M. J., Watrous, A. J., Ekstrom, A. D., Ranganath, C., & Otten, L. J. (2013). Expected reward modulates encoding-related theta activity before an event. NeuroImage, 64, 68–74.PubMedCrossRef Gruber, M. J., Watrous, A. J., Ekstrom, A. D., Ranganath, C., & Otten, L. J. (2013). Expected reward modulates encoding-related theta activity before an event. NeuroImage, 64, 68–74.PubMedCrossRef
go back to reference Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8871–8876.PubMedPubMedCentralCrossRef Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8871–8876.PubMedPubMedCentralCrossRef
go back to reference Kecojevic, A., Basch, C. H., Sullivan, M., & Davi, N. K. (2020). The impact of the COVID-19 epidemic on mental health of undergraduate students in New Jersey, cross-sectional study. PLoS ONE, 15(9), e0239696.PubMedPubMedCentralCrossRef Kecojevic, A., Basch, C. H., Sullivan, M., & Davi, N. K. (2020). The impact of the COVID-19 epidemic on mental health of undergraduate students in New Jersey, cross-sectional study. PLoS ONE, 15(9), e0239696.PubMedPubMedCentralCrossRef
go back to reference Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598–1610.PubMedCrossRef Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598–1610.PubMedCrossRef
go back to reference Kostandyan, M., Bombeke, K., Carsten, T., Krebs, R. M., Notebaert, W., & Boehler, C. N. (2019). Differential effects of sustained and transient effort triggered by reward—a combined EEG and pupillometry study. Neuropsychologia, 123, 116–130.PubMedCrossRef Kostandyan, M., Bombeke, K., Carsten, T., Krebs, R. M., Notebaert, W., & Boehler, C. N. (2019). Differential effects of sustained and transient effort triggered by reward—a combined EEG and pupillometry study. Neuropsychologia, 123, 116–130.PubMedCrossRef
go back to reference Manohar, S. G., Finzi, R. D., Drew, D., & Husain, M. (2017). Distinct motivational effects of contingent and noncontingent rewards. Psychological Science, 28(7), 1016–1026.PubMedCrossRef Manohar, S. G., Finzi, R. D., Drew, D., & Husain, M. (2017). Distinct motivational effects of contingent and noncontingent rewards. Psychological Science, 28(7), 1016–1026.PubMedCrossRef
go back to reference Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11(10), 442–450.PubMedCrossRef Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11(10), 442–450.PubMedCrossRef
go back to reference Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of reward motivation on human declarative memory. Neuroscience and Biobehavioral Reviews, 61, 156–176.PubMedCrossRef Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of reward motivation on human declarative memory. Neuroscience and Biobehavioral Reviews, 61, 156–176.PubMedCrossRef
go back to reference Mowbray, G. H., & Rhoades, M. V. (1959). On the reduction of choice reaction times with practice. Quarterly Journal of Experimental Psychology, 11(1), 16–23.CrossRef Mowbray, G. H., & Rhoades, M. V. (1959). On the reduction of choice reaction times with practice. Quarterly Journal of Experimental Psychology, 11(1), 16–23.CrossRef
go back to reference Niv, Y. (2007). Cost, benefit, tonic, phasic: What do response rates tell us about dopamine and motivation? Annals of the New York Academy of Sciences, 1104, 357–376.PubMedCrossRef Niv, Y. (2007). Cost, benefit, tonic, phasic: What do response rates tell us about dopamine and motivation? Annals of the New York Academy of Sciences, 1104, 357–376.PubMedCrossRef
go back to reference Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology (berl), 191(3), 507–520.PubMedCrossRef Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology (berl), 191(3), 507–520.PubMedCrossRef
go back to reference O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18, 283–328.PubMedCrossRef O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18, 283–328.PubMedCrossRef
go back to reference Payne, J., Chambers, A. M., & Kensinger, E. A. (2012). Sleep promotes lasting changes in selective memory for emotional scenes. Frontiers in Integrative Neuroscience, 6, 108.PubMedPubMedCentralCrossRef Payne, J., Chambers, A. M., & Kensinger, E. A. (2012). Sleep promotes lasting changes in selective memory for emotional scenes. Frontiers in Integrative Neuroscience, 6, 108.PubMedPubMedCentralCrossRef
go back to reference Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2013). nlme: Linear and nonlinear mixed effects models. R Package Version., 3, 1–89. Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2013). nlme: Linear and nonlinear mixed effects models. R Package Version., 3, 1–89.
go back to reference Poh, J. H., Massar, S. A., Jamaluddin, S. A., & Chee, M. W. (2019). Reward supports flexible orienting of attention to category information and influences subsequent memory. Psychonomic Bulletin & Review, 26, 559–568.CrossRef Poh, J. H., Massar, S. A., Jamaluddin, S. A., & Chee, M. W. (2019). Reward supports flexible orienting of attention to category information and influences subsequent memory. Psychonomic Bulletin & Review, 26, 559–568.CrossRef
go back to reference Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 251(4996), 947–950.PubMedCrossRef Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 251(4996), 947–950.PubMedCrossRef
go back to reference Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27.PubMedCrossRef Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27.PubMedCrossRef
go back to reference Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.PubMedCrossRef Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.PubMedCrossRef
go back to reference Spaniol, J., Schain, C., & Bowen, H. J. (2014). Reward-enhanced memory in younger and older adults. Journals of Gerontology Series b: Psychological Sciences and Social Sciences, 69(5), 730–740.PubMedCrossRef Spaniol, J., Schain, C., & Bowen, H. J. (2014). Reward-enhanced memory in younger and older adults. Journals of Gerontology Series b: Psychological Sciences and Social Sciences, 69(5), 730–740.PubMedCrossRef
go back to reference Stanek, J. K., Dickerson, K. C., Chiew, K. S., Clement, N. J., & Adcock, R. A. (2019). Expected reward value and reward uncertainty have temporally dissociable effects on memory formation. Journal of Cognitive Neuroscience, 31(10), 1443–1454.PubMedPubMedCentralCrossRef Stanek, J. K., Dickerson, K. C., Chiew, K. S., Clement, N. J., & Adcock, R. A. (2019). Expected reward value and reward uncertainty have temporally dissociable effects on memory formation. Journal of Cognitive Neuroscience, 31(10), 1443–1454.PubMedPubMedCentralCrossRef
go back to reference Studte, S., Bridger, E., & Mecklinger, A. (2017). Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs. Brain and Language, 167, 28–35.PubMedCrossRef Studte, S., Bridger, E., & Mecklinger, A. (2017). Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs. Brain and Language, 167, 28–35.PubMedCrossRef
go back to reference Villaseñor, J. J., Sklenar, A. M., Frankenstein, A. N., Levy, P. U., McCurdy, M. P., & Leshikar, E. D. (2021). Value-directed memory effects on item and context memory. Memory & Cognition, 49(6), 1082–1100.CrossRef Villaseñor, J. J., Sklenar, A. M., Frankenstein, A. N., Levy, P. U., McCurdy, M. P., & Leshikar, E. D. (2021). Value-directed memory effects on item and context memory. Memory & Cognition, 49(6), 1082–1100.CrossRef
go back to reference Visscher, K. M., Miezin, F. M., Kelly, J. E., Buckner, R. L., Donaldson, D. I., McAvoy, M. P., & Petersen, S. E. (2003). Mixed blocked/event-related designs separate transient and sustained activity in fMRI. NeuroImage, 19(4), 1694–1708.PubMedCrossRef Visscher, K. M., Miezin, F. M., Kelly, J. E., Buckner, R. L., Donaldson, D. I., McAvoy, M. P., & Petersen, S. E. (2003). Mixed blocked/event-related designs separate transient and sustained activity in fMRI. NeuroImage, 19(4), 1694–1708.PubMedCrossRef
go back to reference Walker, M. P., & Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44(1), 121–133.PubMedCrossRef Walker, M. P., & Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44(1), 121–133.PubMedCrossRef
go back to reference Williams, R. S., Biel, A. L., Dyson, B. J., & Spaniol, J. (2017). Age differences in gain-and loss-motivated attention. Brain and Cognition, 111, 171–181.PubMedCrossRef Williams, R. S., Biel, A. L., Dyson, B. J., & Spaniol, J. (2017). Age differences in gain-and loss-motivated attention. Brain and Cognition, 111, 171–181.PubMedCrossRef
go back to reference Williams, R. S., Kudus, F., Dyson, B. J., & Spaniol, J. (2018). Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults. Cognitive, Affective, and Behavioral Neuroscience, 18(2), 313–330.CrossRef Williams, R. S., Kudus, F., Dyson, B. J., & Spaniol, J. (2018). Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults. Cognitive, Affective, and Behavioral Neuroscience, 18(2), 313–330.CrossRef
go back to reference Wise, R. A., & Rompre, P. P. (1989). Brain dopamine and reward. Annual Review Psychology, 40, 191–225.CrossRef Wise, R. A., & Rompre, P. P. (1989). Brain dopamine and reward. Annual Review Psychology, 40, 191–225.CrossRef
go back to reference Yee, D. M., & Braver, T. S. (2018). Interactions of motivation and cognitive control. Current Opinion in Behavioral Sciences, 19, 83–90.PubMedCrossRef Yee, D. M., & Braver, T. S. (2018). Interactions of motivation and cognitive control. Current Opinion in Behavioral Sciences, 19, 83–90.PubMedCrossRef
go back to reference Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: Evidence for a dual-process model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(6), 1341.PubMed Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: Evidence for a dual-process model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(6), 1341.PubMed
go back to reference Yonelinas, A. P. (2001). Components of episodic memory: the contribution of recollection and familiarity. Philosophical Transactions of the Royal Society of London. Series b: Biological Sciences, 356(1413), 1363–1374.PubMedPubMedCentralCrossRef Yonelinas, A. P. (2001). Components of episodic memory: the contribution of recollection and familiarity. Philosophical Transactions of the Royal Society of London. Series b: Biological Sciences, 356(1413), 1363–1374.PubMedPubMedCentralCrossRef
go back to reference Zweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., & Paladini, C. A. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceeding National Academy of Sciences, 106(18), 7281–7288.CrossRef Zweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., & Paladini, C. A. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceeding National Academy of Sciences, 106(18), 7281–7288.CrossRef
Metagegevens
Titel
Contributions of transient and sustained reward to memory formation
Auteurs
Avery S. Gholston
Kyle E. Thurmann
Kimberly S. Chiew
Publicatiedatum
20-04-2023
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 8/2023
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-023-01829-5

Andere artikelen Uitgave 8/2023

Psychological Research 8/2023 Naar de uitgave