Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2016

06-03-2015 | Original Article

Assessing the Approximate Number System: no relation between numerical comparison and estimation tasks

Auteurs: Mathieu Guillaume, Wim Gevers, Alain Content

Gepubliceerd in: Psychological Research | Uitgave 2/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Whether our general numerical skills and the mathematical knowledge that we acquire at school are entwined is a debated issue, which many researchers are still striving to investigate. The findings reported in the literature are actually inconsistent; some studies emphasized the existence of a relationship between the acuity of the Approximate Number System (ANS) and arithmetic competence, while some others did not observe any significant correlation. One potential explanation of the discrepancy might stem from the evaluation of the ANS itself. In the present study, we correlated two measures used to index ANS acuity with arithmetic performance. These measures were the Weber fraction (w), computed from a numerical comparison task and the coefficient of variation (CV), computed from a numerical estimation task. Arithmetic performance correlated with estimation CV but not with comparison w. We further investigated the meaning of this result by taking the relationship between w and CV into account. We expected a tight relation as both these measures are believed to assess ANS acuity. Crucially, however, w and CV did not correlate with each other. Moreover, the value of w was modulated by the congruity of the relation between numerical magnitude and non-numerical visual cues, potentially accounting for the lack of correlation between the measures. Our findings thus challenge the overuse of w to assess ANS acuity and more generally put into question the relevance of correlating this measure with arithmetic without any deeper understanding of what they are really indexing.
Voetnoten
1
Although the coefficient of variation evaluates the variability (or consistency) of numerical estimates, it does not measure their veridicity, that is, their accuracy with regard to the actual true magnitude
 
2
The following mathematical expression was used to fit individual proportion correct responses as a function of ratios (r). The parameter w in the equation is the Weber Fraction.
$$1 - \frac{1}{2}erfc\left[ {\frac{1}{w}\sqrt {\frac{{\left( {r - 1} \right)^{2} }}{{2\left( {r^{2} + 1} \right)}}} } \right]$$
 
3
Spearman rho coefficients were preferred due to the positive skewness of some of the measures.
 
4
The inclusion or the exclusion of two potential outliers did not change the pattern and interpretation of the results
 
5
It should be noted that we assessed arithmetic performance—which is highly related to math ability—through one measure of arithmetic fluency. Further studies should investigate whether other aspects of general math ability (such as problem solving, spatial reasoning, etc.) are related to basic numerical abilities, and whether they are validly assessed
 
Literatuur
go back to reference Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222.CrossRefPubMed Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222.CrossRefPubMed
go back to reference Church, R. M., & Broadbent, H. A. (1990). Alternative representations of time, number, and rate. Cognition, 37(1), 55–81.CrossRefPubMed Church, R. M., & Broadbent, H. A. (1990). Alternative representations of time, number, and rate. Cognition, 37(1), 55–81.CrossRefPubMed
go back to reference Crollen, V., Castronovo, J., & Seron, X. (2011). Under- and over-estimation. Experimental Psychology, 58(1), 39–49.CrossRefPubMed Crollen, V., Castronovo, J., & Seron, X. (2011). Under- and over-estimation. Experimental Psychology, 58(1), 39–49.CrossRefPubMed
go back to reference De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.CrossRef De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.CrossRef
go back to reference De Vos, T. (1992). Test voor het vaststellen van het rekenvaardigheidsniveau der elementaire bewerkingen (automatisering) voor het basis en voortgezet onderwijs: Handleiding [Test to determine the mathematics ability level for elementary operations (automatization) in primary and secondary education: Manual]. Nijmegen, The Netherlands: Berkhout. De Vos, T. (1992). Test voor het vaststellen van het rekenvaardigheidsniveau der elementaire bewerkingen (automatisering) voor het basis en voortgezet onderwijs: Handleiding [Test to determine the mathematics ability level for elementary operations (automatization) in primary and secondary education: Manual]. Nijmegen, The Netherlands: Berkhout.
go back to reference Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16(1), 16–36.CrossRef Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16(1), 16–36.CrossRef
go back to reference Dehaene, S. (2003). The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.CrossRefPubMed Dehaene, S. (2003). The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.CrossRefPubMed
go back to reference DeWind, N. K., & Brannon, E. M. (2012). Malleability of the Approximate Number System: effects of feedback and training. Frontiers in Human Neuroscience, 6(68), 1–10. DeWind, N. K., & Brannon, E. M. (2012). Malleability of the Approximate Number System: effects of feedback and training. Frontiers in Human Neuroscience, 6(68), 1–10.
go back to reference Frank, M. C., Fedorenko, E., Lai, P., Saxe, R., & Gibson, E. (2012). Verbal interference suppresses exact numerical representation. Cognitive Psychology, 64(1–2), 74–92.CrossRefPubMed Frank, M. C., Fedorenko, E., Lai, P., Saxe, R., & Gibson, E. (2012). Verbal interference suppresses exact numerical representation. Cognitive Psychology, 64(1–2), 74–92.CrossRefPubMed
go back to reference Gebuis, T., Gevers, W., & Cohen Kadosh, R. (2014). Topographic representation of high-level cognition: numerosity or sensory processing? Trends in Cognitive Sciences, 18(1), 1–3.CrossRefPubMed Gebuis, T., Gevers, W., & Cohen Kadosh, R. (2014). Topographic representation of high-level cognition: numerosity or sensory processing? Trends in Cognitive Sciences, 18(1), 1–3.CrossRefPubMed
go back to reference Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981–986.CrossRefPubMed Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981–986.CrossRefPubMed
go back to reference Gebuis, T., & Reynvoet, B. (2012b). Continuous visual properties explain neural responses to nonsymbolic number. Psychophysiology, 49(11), 1649–1659.CrossRef Gebuis, T., & Reynvoet, B. (2012b). Continuous visual properties explain neural responses to nonsymbolic number. Psychophysiology, 49(11), 1649–1659.CrossRef
go back to reference Gebuis, T., & Reynvoet, B. (2012c). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648.CrossRef Gebuis, T., & Reynvoet, B. (2012c). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648.CrossRef
go back to reference Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8(6), e67374.PubMedCentralCrossRefPubMed Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8(6), e67374.PubMedCentralCrossRefPubMed
go back to reference Gilmore, C. K., Attridge, N., & Inglis, M. (2011). Measuring the approximate number system. The Quarterly Journal of Experimental Psychology, 64(11), 2099–2109.CrossRefPubMed Gilmore, C. K., Attridge, N., & Inglis, M. (2011). Measuring the approximate number system. The Quarterly Journal of Experimental Psychology, 64(11), 2099–2109.CrossRefPubMed
go back to reference Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447(7144), 589–591.CrossRefPubMed Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447(7144), 589–591.CrossRefPubMed
go back to reference Guillaume, M., Nys, J., Mussolin, C., & Content, A. (2013). Differences in the acuity of the approximate number system in adults: the effect of mathematical ability. Acta Psychologica, 144(3), 506–512.CrossRefPubMed Guillaume, M., Nys, J., Mussolin, C., & Content, A. (2013). Differences in the acuity of the approximate number system in adults: the effect of mathematical ability. Acta Psychologica, 144(3), 506–512.CrossRefPubMed
go back to reference Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465.CrossRefPubMed Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465.CrossRefPubMed
go back to reference Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11116–11120.PubMedCentralCrossRefPubMed Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11116–11120.PubMedCentralCrossRefPubMed
go back to reference Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668.CrossRefPubMed Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668.CrossRefPubMed
go back to reference Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29.CrossRefPubMed Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29.CrossRefPubMed
go back to reference Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: but only in children. Psychonomic Bulletin and Review, 18, 1222–1229.CrossRefPubMed Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: but only in children. Psychonomic Bulletin and Review, 18, 1222–1229.CrossRefPubMed
go back to reference Inglis, M., & Gilmore, C. (2013). Sampling from the mental number line: how are approximate number system representations formed? Cognition, 129(1), 63–69.CrossRefPubMed Inglis, M., & Gilmore, C. (2013). Sampling from the mental number line: how are approximate number system representations formed? Cognition, 129(1), 63–69.CrossRefPubMed
go back to reference Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247.CrossRefPubMed Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247.CrossRefPubMed
go back to reference Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception, 36 ECVP Abstract Supplement. Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception, 36 ECVP Abstract Supplement.
go back to reference Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300.PubMedCentralCrossRefPubMed Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300.PubMedCentralCrossRefPubMed
go back to reference Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373–379.PubMedCentralCrossRefPubMed Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373–379.PubMedCentralCrossRefPubMed
go back to reference Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261.CrossRefPubMed Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261.CrossRefPubMed
go back to reference Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science,. doi:10.1111/desc.12152. Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science,. doi:10.​1111/​desc.​12152.
go back to reference Macizo, P., & Herrera, A. (2011). Cognitive control in number processing: evidence from the unit–decade compatibility effect. Acta Psychologica, 136(1), 112–118.CrossRefPubMed Macizo, P., & Herrera, A. (2011). Cognitive control in number processing: evidence from the unit–decade compatibility effect. Acta Psychologica, 136(1), 112–118.CrossRefPubMed
go back to reference Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320.PubMed Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320.PubMed
go back to reference Mejias, S., Grégoire, J., & Noël, M.-P. (2012a). Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 22(1), 164–170.CrossRef Mejias, S., Grégoire, J., & Noël, M.-P. (2012a). Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 22(1), 164–170.CrossRef
go back to reference Mejias, S., Mussolin, C., Rousselle, L., Grégoire, J., & Noël, M.-P. (2012b). Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychology, 18(6), 550–575.CrossRefPubMed Mejias, S., Mussolin, C., Rousselle, L., Grégoire, J., & Noël, M.-P. (2012b). Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychology, 18(6), 550–575.CrossRefPubMed
go back to reference Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82(1), 25–33.CrossRef Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82(1), 25–33.CrossRef
go back to reference Nys, J., & Content, A. (2012). Judgement of discrete and continuous quantity in adults: number counts! The Quarterly Journal of Experimental Psychology, 65(4), 675–690.CrossRefPubMed Nys, J., & Content, A. (2012). Judgement of discrete and continuous quantity in adults: number counts! The Quarterly Journal of Experimental Psychology, 65(4), 675–690.CrossRefPubMed
go back to reference Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J., & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education, 2(1), 13–22.CrossRef Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J., & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education, 2(1), 13–22.CrossRef
go back to reference Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.CrossRefPubMed Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.CrossRefPubMed
go back to reference Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503.CrossRefPubMed Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503.CrossRefPubMed
go back to reference Platt, J. R., & Johnson, D. M. (1971). Localization of position within a homogeneous behavior chain: effects of error contingencies. Learning and Motivation, 2(4), 386–414.CrossRef Platt, J. R., & Johnson, D. M. (1971). Localization of position within a homogeneous behavior chain: effects of error contingencies. Learning and Motivation, 2(4), 386–414.CrossRef
go back to reference Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140, 50–57.CrossRefPubMed Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140, 50–57.CrossRefPubMed
go back to reference Ramos-Christian, V., Schleser, R., & Varn, M. E. (2008). Math fluency: accuracy versus speed in preoperational and concrete operational first and second grade children. Early Childhood Education Journal, 35(6), 543–549.CrossRef Ramos-Christian, V., Schleser, R., & Varn, M. E. (2008). Math fluency: accuracy versus speed in preoperational and concrete operational first and second grade children. Early Childhood Education Journal, 35(6), 543–549.CrossRef
go back to reference Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2011). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30(2), 344–357.CrossRefPubMed Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2011). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30(2), 344–357.CrossRefPubMed
go back to reference Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: what underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418–431.CrossRefPubMed Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: what underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418–431.CrossRefPubMed
go back to reference Smets, K., Gebuis, T., Defever, E., & Reynvoet, B. (2014). Concurrent validity of approximate number sense tasks in adults and children. Acta Psychologica, 150, 120–128.CrossRefPubMed Smets, K., Gebuis, T., Defever, E., & Reynvoet, B. (2014). Concurrent validity of approximate number sense tasks in adults and children. Acta Psychologica, 150, 120–128.CrossRefPubMed
go back to reference Smets, K., Sasanguie, D., Szücs, D., & Reynvoet, B. (2015). The effect of different methods to construct non-symbolic stimuli in numerosity estimation and comparison. Journal of Cognitive Psychology,. doi:10.1080/20445911.2014.996568. Smets, K., Sasanguie, D., Szücs, D., & Reynvoet, B. (2015). The effect of different methods to construct non-symbolic stimuli in numerosity estimation and comparison. Journal of Cognitive Psychology,. doi:10.​1080/​20445911.​2014.​996568.
go back to reference Sullivan, J., & Barner, D. (2013). How are number words mapped to approximate magnitudes? The Quarterly Journal of Experimental Psychology, 66(2), 389–402.CrossRefPubMed Sullivan, J., & Barner, D. (2013). How are number words mapped to approximate magnitudes? The Quarterly Journal of Experimental Psychology, 66(2), 389–402.CrossRefPubMed
go back to reference Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in humans: the psychophysics of number representation. Psychological Science, 10(2), 130–137.CrossRef Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in humans: the psychophysics of number representation. Psychological Science, 10(2), 130–137.CrossRef
Metagegevens
Titel
Assessing the Approximate Number System: no relation between numerical comparison and estimation tasks
Auteurs
Mathieu Guillaume
Wim Gevers
Alain Content
Publicatiedatum
06-03-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 2/2016
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0657-x

Andere artikelen Uitgave 2/2016

Psychological Research 2/2016 Naar de uitgave