Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2021

04-07-2020 | Original Article

The influence of children’s mathematical competence on performance in mental number line, time knowledge and time perception

Auteurs: Mohammad Ali Nazari, Saied Sabaghypour, Mina Pezhmanfard, Kiana Azizi, Shahram Vahedi

Gepubliceerd in: Psychological Research | Uitgave 5/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

A growing body of research suggests that space, time and number are represented within a common system. Other studies have shown this relationship is related to the mathematical competency. Here we examined the influence of the mathematical capacities of 8–12 years old children, grouped into high (n = 63) and low (n = 58) on performance in mental number line, time knowledge and time perception. The results revealed that mathematical competency influences mental number line and time knowledge, but with regard to time perception the effects were only observed in time production task. In addition, the results of correlation analysis revealed interaction between time knowledge, time production (but not reproduction) and mental number line. Finally, the findings are discussed within the framework of the recent theories regarding representation of space, time and number.
Literatuur
go back to reference Allman, M. J., Teki, S., Griffiths, T. D., & Meck, W. H. (2014). Properties of the internal clock: First-and second-order principles of subjective time. Annual Review of Psychology, 65, 743–771.PubMedCrossRef Allman, M. J., Teki, S., Griffiths, T. D., & Meck, W. H. (2014). Properties of the internal clock: First-and second-order principles of subjective time. Annual Review of Psychology, 65, 743–771.PubMedCrossRef
go back to reference Andersson, U. (2008). Mathematical competencies in children with different types of learning difficulties. Journal of Educational Psychology, 100(1), 48.CrossRef Andersson, U. (2008). Mathematical competencies in children with different types of learning difficulties. Journal of Educational Psychology, 100(1), 48.CrossRef
go back to reference Arrighi, R., Togoli, I., & Burr, D. C. (2014). A generalized sense of number. Proceedings of the Royal Society B: Biological Sciences, 281(1797), 20141791.PubMedPubMedCentralCrossRef Arrighi, R., Togoli, I., & Burr, D. C. (2014). A generalized sense of number. Proceedings of the Royal Society B: Biological Sciences, 281(1797), 20141791.PubMedPubMedCentralCrossRef
go back to reference Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111(2), 246–267.PubMedCrossRef Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111(2), 246–267.PubMedCrossRef
go back to reference Aulet, L. S., & Lourenco, S. F. (2018). The developing mental number line: Does its directionality relate to 5- to 7-year-old children’s mathematical abilities? Frontiers in Psychology, 9, 1142.PubMedPubMedCentralCrossRef Aulet, L. S., & Lourenco, S. F. (2018). The developing mental number line: Does its directionality relate to 5- to 7-year-old children’s mathematical abilities? Frontiers in Psychology, 9, 1142.PubMedPubMedCentralCrossRef
go back to reference Aulet, L. S., Yousif, S. R., & Lourenco, S. F. (2017). Numbers uniquely bias spatial attention: a novel paradigm for understanding spatial-numerical associations. In G. Gunzelmann., A. Howes., T. Tenbrink., & E. J. Davelaar (Ed.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 75–80). Austin, TX: Cognitive Science Society. Aulet, L. S., Yousif, S. R., & Lourenco, S. F. (2017). Numbers uniquely bias spatial attention: a novel paradigm for understanding spatial-numerical associations. In G. Gunzelmann., A. Howes., T. Tenbrink., & E. J. Davelaar (Ed.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 75–80). Austin, TX: Cognitive Science Society.
go back to reference Baudouin, A., Vanneste, S., Isingrini, M., & Pouthas, V. (2006). Differential involvement of internal clock and working memory in the production and reproduction of duration: A study on older adults. Acta Psychologica, 121(3), 285–296.PubMedCrossRef Baudouin, A., Vanneste, S., Isingrini, M., & Pouthas, V. (2006). Differential involvement of internal clock and working memory in the production and reproduction of duration: A study on older adults. Acta Psychologica, 121(3), 285–296.PubMedCrossRef
go back to reference Block, R. A., Zakay, D., & Hancock, P. A. (1998). Human aging and duration judgments: A meta-analytic review. Psychology and Aging, 13(4), 584.PubMedCrossRef Block, R. A., Zakay, D., & Hancock, P. A. (1998). Human aging and duration judgments: A meta-analytic review. Psychology and Aging, 13(4), 584.PubMedCrossRef
go back to reference Bonato, M., Zorzi, M., & Umiltà, C. (2012). When time is space: Evidence for a mental time line. Neuroscience & Biobehavioral Reviews, 36(10), 2257–2273.CrossRef Bonato, M., Zorzi, M., & Umiltà, C. (2012). When time is space: Evidence for a mental time line. Neuroscience & Biobehavioral Reviews, 36(10), 2257–2273.CrossRef
go back to reference Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189.PubMedCrossRef Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189.PubMedCrossRef
go back to reference Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031.PubMedCrossRef Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031.PubMedCrossRef
go back to reference Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478.PubMedPubMedCentralCrossRef Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478.PubMedPubMedCentralCrossRef
go back to reference Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–765.PubMedCrossRef Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–765.PubMedCrossRef
go back to reference Bull, R., Cleland, A. A., & Mitchell, T. (2013). Sex differences in the spatial representation of number. Journal of Experimental Psychology: General, 142(1), 181.CrossRef Bull, R., Cleland, A. A., & Mitchell, T. (2013). Sex differences in the spatial representation of number. Journal of Experimental Psychology: General, 142(1), 181.CrossRef
go back to reference Butterworth, B. (2008). Developmental dyscalculia. In J. Reed & J. Warner-Rogers (Eds.), Child Neuropsychology: Concepts, Theory, and Practice (pp. 357–374). Butterworth, B. (2008). Developmental dyscalculia. In J. Reed & J. Warner-Rogers (Eds.), Child Neuropsychology: Concepts, Theory, and Practice (pp. 357–374).
go back to reference Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2009). Dissociations and interactions between time, numerosity and space processing. Neuropsychologia, 47(13), 2732–2748.PubMedPubMedCentralCrossRef Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2009). Dissociations and interactions between time, numerosity and space processing. Neuropsychologia, 47(13), 2732–2748.PubMedPubMedCentralCrossRef
go back to reference Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2011). Numbers and time doubly dissociate. Neuropsychologia, 49(11), 3078–3092.PubMedCrossRef Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2011). Numbers and time doubly dissociate. Neuropsychologia, 49(11), 3078–3092.PubMedCrossRef
go back to reference Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106(2), 579–593.PubMedCrossRef Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106(2), 579–593.PubMedCrossRef
go back to reference Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences, 103(12), 4693–4698.CrossRef Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences, 103(12), 4693–4698.CrossRef
go back to reference Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2–11.CrossRef Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2–11.CrossRef
go back to reference Cipora, K., Hohol, M., Nuerk, H. C., Willmes, K., Brożek, B., Kucharzyk, B., et al. (2016). Professional mathematicians differ from controls in their spatial–numerical associations. Psychological Research Psychologische Forschung, 80(4), 710–726.PubMedCrossRef Cipora, K., Hohol, M., Nuerk, H. C., Willmes, K., Brożek, B., Kucharzyk, B., et al. (2016). Professional mathematicians differ from controls in their spatial–numerical associations. Psychological Research Psychologische Forschung, 80(4), 710–726.PubMedCrossRef
go back to reference Cipora, K., & Nuerk, H. C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. The Quarterly Journal of Experimental Psychology, 66(10), 1974–1991.PubMedCrossRef Cipora, K., & Nuerk, H. C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. The Quarterly Journal of Experimental Psychology, 66(10), 1974–1991.PubMedCrossRef
go back to reference Cohen, D. J., & Sarnecka, B. W. (2014). Children’s number-line estimation shows development of measurement skills (not number representations). Developmental Psychology, 50(6), 1640.PubMedPubMedCentralCrossRef Cohen, D. J., & Sarnecka, B. W. (2014). Children’s number-line estimation shows development of measurement skills (not number representations). Developmental Psychology, 50(6), 1640.PubMedPubMedCentralCrossRef
go back to reference Conson, M., Cinque, F., Barbarulo, A. M., & Trojano, L. (2008). A common processing system for duration, order and spatial information: Evidence from a time estimation task. Experimental Brain Research, 187(2), 267–274.PubMedCrossRef Conson, M., Cinque, F., Barbarulo, A. M., & Trojano, L. (2008). A common processing system for duration, order and spatial information: Evidence from a time estimation task. Experimental Brain Research, 187(2), 267–274.PubMedCrossRef
go back to reference Dehaene, S. (2001). Précis of the number sense. Mind & language, 16(1), 16–36. Dehaene, S. (2001). Précis of the number sense. Mind & language, 16(1), 16–36.
go back to reference Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford: OUP. Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford: OUP.
go back to reference Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371.CrossRef Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371.CrossRef
go back to reference Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.PubMedCrossRef Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.PubMedCrossRef
go back to reference Droit-Volet, S., Clément, A., & Fayol, M. (2008). Time, number and length: Similarities and differences in discrimination in adults and children. The Quarterly Journal of Experimental Psychology, 61(12), 1827–1846.PubMedCrossRef Droit-Volet, S., Clément, A., & Fayol, M. (2008). Time, number and length: Similarities and differences in discrimination in adults and children. The Quarterly Journal of Experimental Psychology, 61(12), 1827–1846.PubMedCrossRef
go back to reference Fabbri, M., & Natale, V. (2009). Does the ATOM (a theory of magnitude) model represent the advance in psychological research? 83–111. Fabbri, M., & Natale, V. (2009). Does the ATOM (a theory of magnitude) model represent the advance in psychological research? 83–111.
go back to reference Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). Psychology Press. Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). Psychology Press.
go back to reference Fischer, M. H. (2008). Finger counting habits modulate spatial–numerical associations. Cortex, 44(4), 386–392.PubMedCrossRef Fischer, M. H. (2008). Finger counting habits modulate spatial–numerical associations. Cortex, 44(4), 386–392.PubMedCrossRef
go back to reference Fraisse, P. (1963) The Psychology of Time. Harper & Row. Fraisse, P. (1963) The Psychology of Time. Harper & Row.
go back to reference Friedman, W. J. (1986). The development of children's knowledge of temporal structure. Child development, 57(6), 1386–1400. Friedman, W. J. (1986). The development of children's knowledge of temporal structure. Child development, 57(6), 1386–1400.
go back to reference Friedman, W. J. (2000). The development of children's knowledge of the times of future events. Child Development, 71(4), 913–932.PubMedCrossRef Friedman, W. J. (2000). The development of children's knowledge of the times of future events. Child Development, 71(4), 913–932.PubMedCrossRef
go back to reference Fuson, K. C., Clements, D. H., & Sybilla. Beckmann. (2010). Focus in kindergarten: Teaching with curriculum focal points. National Council of Teachers of Mathematics. Fuson, K. C., Clements, D. H., & Sybilla. Beckmann. (2010). Focus in kindergarten: Teaching with curriculum focal points. National Council of Teachers of Mathematics.
go back to reference Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87–B95.PubMedCrossRef Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87–B95.PubMedCrossRef
go back to reference Gevers, W., Reynvoet, B., & Fias, W. (2004). The mental representation of ordinal sequences is spatially organised: evidence from days of the week. Cortex, 40, 171–172. Gevers, W., Reynvoet, B., & Fias, W. (2004). The mental representation of ordinal sequences is spatially organised: evidence from days of the week. Cortex, 40, 171–172.
go back to reference Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematics achievement in middle childhood. Journal of Experimental Child Psychology, 163, 107–125.PubMedCrossRef Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematics achievement in middle childhood. Journal of Experimental Child Psychology, 163, 107–125.PubMedCrossRef
go back to reference Ginsburg, V., Van Dijck, J. P., Previtali, P., Fias, W., & Gevers, W. (2014). The impact of verbal working memory on number–space associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 976.PubMed Ginsburg, V., Van Dijck, J. P., Previtali, P., Fias, W., & Gevers, W. (2014). The impact of verbal working memory on number–space associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 976.PubMed
go back to reference Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children’s arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25(3), 789–798.PubMedCrossRef Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children’s arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25(3), 789–798.PubMedCrossRef
go back to reference Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.CrossRef Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.CrossRef
go back to reference Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: The contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 272.PubMedPubMedCentralCrossRef Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: The contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 272.PubMedPubMedCentralCrossRef
go back to reference Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448.PubMedCrossRef Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448.PubMedCrossRef
go back to reference Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex, 44(4), 454–461.PubMedCrossRef Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex, 44(4), 454–461.PubMedCrossRef
go back to reference Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20(2), 82–88.PubMedPubMedCentralCrossRef Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20(2), 82–88.PubMedPubMedCentralCrossRef
go back to reference Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45–58.PubMedCrossRef Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45–58.PubMedCrossRef
go back to reference Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850.PubMedPubMedCentralCrossRef Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850.PubMedPubMedCentralCrossRef
go back to reference Khoshnoud, S., Shamsi, M., Nazari, M. A., & Makeig, S. (2018). Different cortical source activation patterns in children with attention deficit hyperactivity disorder during a time reproduction task. Journal of Clinical and Experimental Neuropsychology, 40(7), 633–649.PubMedCrossRef Khoshnoud, S., Shamsi, M., Nazari, M. A., & Makeig, S. (2018). Different cortical source activation patterns in children with attention deficit hyperactivity disorder during a time reproduction task. Journal of Clinical and Experimental Neuropsychology, 40(7), 633–649.PubMedCrossRef
go back to reference Kramer, P., Bressan, P., & Grassi, M. (2018). The SNARC effect is associated with worse mathematical intelligence and poorer time estimation. Royal Society Open Science, 5(8), 172362.PubMedPubMedCentralCrossRef Kramer, P., Bressan, P., & Grassi, M. (2018). The SNARC effect is associated with worse mathematical intelligence and poorer time estimation. Royal Society Open Science, 5(8), 172362.PubMedPubMedCentralCrossRef
go back to reference Labrell, F., Mikaeloff, Y., Perdry, H., & Dellatolas, G. (2016). Time knowledge acquisition in children aged 6–11 years and its relationship with numerical skills. Journal of Experimental Child Psychology, 143, 1–13.PubMedCrossRef Labrell, F., Mikaeloff, Y., Perdry, H., & Dellatolas, G. (2016). Time knowledge acquisition in children aged 6–11 years and its relationship with numerical skills. Journal of Experimental Child Psychology, 143, 1–13.PubMedCrossRef
go back to reference Labrell, F., & Stefaniak, N. (2011). The development of diachronic thinking between 6 and 11 years: The case of growth and death. International Journal of Behavioral Development, 35(6), 532–541.CrossRef Labrell, F., & Stefaniak, N. (2011). The development of diachronic thinking between 6 and 11 years: The case of growth and death. International Journal of Behavioral Development, 35(6), 532–541.CrossRef
go back to reference Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 1723–1743.PubMedCrossRef Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 1723–1743.PubMedCrossRef
go back to reference Lauer, J. E., & Lourenco, S. F. (2016). Spatial processing in infancy predicts both spatial and mathematical aptitude in childhood. Psychological Science, 27(10), 1291–1298.PubMedCrossRef Lauer, J. E., & Lourenco, S. F. (2016). Spatial processing in infancy predicts both spatial and mathematical aptitude in childhood. Psychological Science, 27(10), 1291–1298.PubMedCrossRef
go back to reference Link, T., Nuerk, H. C., & Moeller, K. (2014). On the relation between the mental number line and arithmetic competencies. The Quarterly Journal of Experimental Psychology, 67(8), 1597–1613.PubMedCrossRef Link, T., Nuerk, H. C., & Moeller, K. (2014). On the relation between the mental number line and arithmetic competencies. The Quarterly Journal of Experimental Psychology, 67(8), 1597–1613.PubMedCrossRef
go back to reference Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873–881.PubMedCrossRef Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873–881.PubMedCrossRef
go back to reference Lu, A., Hodges, B., Zhang, J., & Zhang, J. X. (2009). Contextual effects on number–time interaction. Cognition, 113(1), 117–122.PubMedCrossRef Lu, A., Hodges, B., Zhang, J., & Zhang, J. X. (2009). Contextual effects on number–time interaction. Cognition, 113(1), 117–122.PubMedCrossRef
go back to reference Maertens, B., De Smedt, B., Sasanguie, D., Elen, J., & Reynvoet, B. (2016). Enhancing arithmetic in pre-schoolers with comparison or number line estimation training: Does it matter? Learning and Instruction, 46, 1–11.CrossRef Maertens, B., De Smedt, B., Sasanguie, D., Elen, J., & Reynvoet, B. (2016). Enhancing arithmetic in pre-schoolers with comparison or number line estimation training: Does it matter? Learning and Instruction, 46, 1–11.CrossRef
go back to reference Marcelino, L., de Sousa, Ó., & Lopes, A. (2017). Predictive relation between early numerical competencies and mathematics achievement in first grade Portuguese children. Frontiers in Psychology, 8, 1103.PubMedPubMedCentralCrossRef Marcelino, L., de Sousa, Ó., & Lopes, A. (2017). Predictive relation between early numerical competencies and mathematics achievement in first grade Portuguese children. Frontiers in Psychology, 8, 1103.PubMedPubMedCentralCrossRef
go back to reference McCormack, T., & Hoerl, C. (2008). Temporal decentering and the development of temporal concepts. Language Learning, 58, 89–113.CrossRef McCormack, T., & Hoerl, C. (2008). Temporal decentering and the development of temporal concepts. Language Learning, 58, 89–113.CrossRef
go back to reference McInerney, R. J., & Kerns, K. A. (2003). Time reproduction in children with ADHD: Motivation matters. Child Neuropsychology, 9(2), 91–108.PubMedCrossRef McInerney, R. J., & Kerns, K. A. (2003). Time reproduction in children with ADHD: Motivation matters. Child Neuropsychology, 9(2), 91–108.PubMedCrossRef
go back to reference Meck, W. H. (1983). Selective adjustment of the speed of internal clock and memory processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(2), 171.PubMed Meck, W. H. (1983). Selective adjustment of the speed of internal clock and memory processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(2), 171.PubMed
go back to reference Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3(3–4), 227–242.PubMedCrossRef Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3(3–4), 227–242.PubMedCrossRef
go back to reference Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320.PubMed Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320.PubMed
go back to reference Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520.PubMedCrossRef Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520.PubMedCrossRef
go back to reference Mueller, S. T., & Piper, B. J. (2014). The psychology experiment building language (PEBL) and PEBL test battery. Journal of Neuroscience Methods, 222, 250–259.PubMedCrossRef Mueller, S. T., & Piper, B. J. (2014). The psychology experiment building language (PEBL) and PEBL test battery. Journal of Neuroscience Methods, 222, 250–259.PubMedCrossRef
go back to reference Mulligan, J., Woolcott, G., Mitchelmore, M., & Davis, B. (2018). Connecting mathematics learning through spatial reasoning. Mathematics Education Research Journal, 30(1), 77–87.CrossRef Mulligan, J., Woolcott, G., Mitchelmore, M., & Davis, B. (2018). Connecting mathematics learning through spatial reasoning. Mathematics Education Research Journal, 30(1), 77–87.CrossRef
go back to reference Newcombe, N. S. (2013). Seeing relationships: using spatial thinking to teach science, mathematics, and social studies. American Educator, 37(1), 26. Newcombe, N. S. (2013). Seeing relationships: using spatial thinking to teach science, mathematics, and social studies. American Educator, 37(1), 26.
go back to reference Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., et al. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438(3), 308–311.PubMedCrossRef Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., et al. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438(3), 308–311.PubMedCrossRef
go back to reference Ornstein, R. (1975). On the experience of time. Baltimore: Penguin. Ornstein, R. (1975). On the experience of time. Baltimore: Penguin.
go back to reference Östergren, R., & Träff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115(3), 405–421.PubMedCrossRef Östergren, R., & Träff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115(3), 405–421.PubMedCrossRef
go back to reference Pan, Y., & Luo, Q. Y. (2012). Working memory modulates the perception of time. Psychonomic Bulletin & Review, 19(1), 46–51.CrossRef Pan, Y., & Luo, Q. Y. (2012). Working memory modulates the perception of time. Psychonomic Bulletin & Review, 19(1), 46–51.CrossRef
go back to reference Perbal, S., Droit-Volet, S., Isingrini, M., & Pouthas, V. (2002). Relationships between age-related changes in time estimation and age-related changes in processing speed, attention, and memory. Aging, Neuropsychology, and Cognition, 9(3), 201–216.CrossRef Perbal, S., Droit-Volet, S., Isingrini, M., & Pouthas, V. (2002). Relationships between age-related changes in time estimation and age-related changes in processing speed, attention, and memory. Aging, Neuropsychology, and Cognition, 9(3), 201–216.CrossRef
go back to reference Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375–394.PubMedCrossRef Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375–394.PubMedCrossRef
go back to reference Rammsayer, T. H. (2001). Ageing and temporal processing of durations within the psychological present. European Journal of Cognitive Psychology, 13(4), 549–565.CrossRef Rammsayer, T. H. (2001). Ageing and temporal processing of durations within the psychological present. European Journal of Cognitive Psychology, 13(4), 549–565.CrossRef
go back to reference Santiago, J., Román, A., Ouellet, M., Rodríguez, N., & Pérez-Azor, P. (2010). In hindsight, life flows from left to right. Psychological Research PRPF, 74(1), 59–70.CrossRef Santiago, J., Román, A., Ouellet, M., Rodríguez, N., & Pérez-Azor, P. (2010). In hindsight, life flows from left to right. Psychological Research PRPF, 74(1), 59–70.CrossRef
go back to reference Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., et al. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372.CrossRef Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., et al. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372.CrossRef
go back to reference Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: their interrelations in grades 5 and 6. Journal of Educational Psychology, 101(2), 359.CrossRef Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: their interrelations in grades 5 and 6. Journal of Educational Psychology, 101(2), 359.CrossRef
go back to reference Schneider, M., Heine, A., Thaler, V., Torbeyns, J., De Smedt, B., Verschaffel, L., et al. (2008). A validation of eye movements as a measure of elementary school children's developing number sense. Cognitive Development, 23(3), 409–422.CrossRef Schneider, M., Heine, A., Thaler, V., Torbeyns, J., De Smedt, B., Verschaffel, L., et al. (2008). A validation of eye movements as a measure of elementary school children's developing number sense. Cognitive Development, 23(3), 409–422.CrossRef
go back to reference Schneider, M., Merz, S., Stricker, J., De Smedt, B., Torbeyns, J., Verschaffel, L., et al. (2018). Associations of number line estimation with mathematical competence: A meta-analysis. Child Development, 89(5), 1467–1484.PubMedCrossRef Schneider, M., Merz, S., Stricker, J., De Smedt, B., Torbeyns, J., Verschaffel, L., et al. (2018). Associations of number line estimation with mathematical competence: A meta-analysis. Child Development, 89(5), 1467–1484.PubMedCrossRef
go back to reference Seron, X., Pesenti, M., Noel, M. P., Deloche, G., & Cornet, J. A. (1992). Images of numbers, or “When 98 is upper left and 6 sky blue”. Cognition, 44(1–2), 159–196.PubMedCrossRef Seron, X., Pesenti, M., Noel, M. P., Deloche, G., & Cornet, J. A. (1992). Images of numbers, or “When 98 is upper left and 6 sky blue”. Cognition, 44(1–2), 159–196.PubMedCrossRef
go back to reference Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341–361.PubMedCrossRef Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341–361.PubMedCrossRef
go back to reference Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological science, 14(3), 237–250.PubMedCrossRef Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological science, 14(3), 237–250.PubMedCrossRef
go back to reference Simms, V., Clayton, S., Cragg, L., Gilmore, C., & Johnson, S. (2016). Explaining the relationship between number line estimation and mathematical achievement: The role of visuomotor integration and visuospatial skills. Journal of Experimental Child Psychology, 145, 22–33.PubMedCrossRef Simms, V., Clayton, S., Cragg, L., Gilmore, C., & Johnson, S. (2016). Explaining the relationship between number line estimation and mathematical achievement: The role of visuomotor integration and visuospatial skills. Journal of Experimental Child Psychology, 145, 22–33.PubMedCrossRef
go back to reference Skagerlund, K., & Träff, U. (2016). Processing of space, time, and number contributes to mathematical abilities above and beyond domain-general cognitive abilities. Journal of Experimental Child Psychology, 143, 85–101.PubMedCrossRef Skagerlund, K., & Träff, U. (2016). Processing of space, time, and number contributes to mathematical abilities above and beyond domain-general cognitive abilities. Journal of Experimental Child Psychology, 143, 85–101.PubMedCrossRef
go back to reference Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210(4473), 1033–1035.PubMedCrossRef Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210(4473), 1033–1035.PubMedCrossRef
go back to reference Strauss, M. S., & Curtis, L. E. (1981). Infant perception of numerosity. Child Development, 52, 1146–1152.PubMedCrossRef Strauss, M. S., & Curtis, L. E. (1981). Infant perception of numerosity. Child Development, 52, 1146–1152.PubMedCrossRef
go back to reference Tobia, V., Rinaldi, L., & Marzocchi, G. M. (2018). Time processing impairments in preschoolers at risk of developing difficulties in mathematics. Developmental Science, 21(2), e12526.CrossRef Tobia, V., Rinaldi, L., & Marzocchi, G. M. (2018). Time processing impairments in preschoolers at risk of developing difficulties in mathematics. Developmental Science, 21(2), e12526.CrossRef
go back to reference Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5–13.CrossRef Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5–13.CrossRef
go back to reference Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the" internal clock". Psychological Monographs: General and Applied, 77(13), 1.CrossRef Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the" internal clock". Psychological Monographs: General and Applied, 77(13), 1.CrossRef
go back to reference Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial–temporal association of response codes: Understanding the cognitive representations of time. Cognition, 107(2), 501–527.PubMedCrossRef Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial–temporal association of response codes: Understanding the cognitive representations of time. Cognition, 107(2), 501–527.PubMedCrossRef
go back to reference van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114–119.PubMedCrossRef van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114–119.PubMedCrossRef
go back to reference Van Luit, J. E. H., & Toll, S. W. M. (2018). Associative cognitive factors of math problems in students diagnosed with developmental dyscalculia. Frontiers in Psychology, 9, 1907.PubMedPubMedCentralCrossRef Van Luit, J. E. H., & Toll, S. W. M. (2018). Associative cognitive factors of math problems in students diagnosed with developmental dyscalculia. Frontiers in Psychology, 9, 1907.PubMedPubMedCentralCrossRef
go back to reference Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: the same–different task. Journal of Cognitive Psychology, 23(1), 112–120.CrossRef Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: the same–different task. Journal of Cognitive Psychology, 23(1), 112–120.CrossRef
go back to reference Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. (2017). Links between spatial and mathematical skills across the preschool years. Hoboken: Wiley. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. (2017). Links between spatial and mathematical skills across the preschool years. Hoboken: Wiley.
go back to reference Vicario, C. M. (2013). On a generalized magnitude system in the brain: An integrative perspective. Frontiers in Psychology, 4, 829.PubMedPubMedCentral Vicario, C. M. (2013). On a generalized magnitude system in the brain: An integrative perspective. Frontiers in Psychology, 4, 829.PubMedPubMedCentral
go back to reference Vogel, S. E., Grabner, R. H., Schneider, M., Siegler, R. S., & Ansari, D. (2013). Overlapping and distinct brain regions involved in estimating the spatial position of numerical and non-numerical magnitudes: An fMRI study. Neuropsychologia, 51(5), 979–989.PubMedCrossRef Vogel, S. E., Grabner, R. H., Schneider, M., Siegler, R. S., & Ansari, D. (2013). Overlapping and distinct brain regions involved in estimating the spatial position of numerical and non-numerical magnitudes: An fMRI study. Neuropsychologia, 51(5), 979–989.PubMedCrossRef
go back to reference Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.PubMedCrossRef Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.PubMedCrossRef
go back to reference Walsh, V. (2015). A theory of magnitude: The parts that sum to number. In R. C. Kadosh & A. Dowker (Eds.), Oxford library of psychology. The Oxford handbook of numerical cognition (pp. 552–565). Oxford University Press. Walsh, V. (2015). A theory of magnitude: The parts that sum to number. In R. C. Kadosh & A. Dowker (Eds.), Oxford library of psychology. The Oxford handbook of numerical cognition (pp. 552–565). Oxford University Press.
go back to reference Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human Behavior, Learning, and the Developing Brain: Atypical Development, 2, 212–237. Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human Behavior, Learning, and the Developing Brain: Atypical Development, 2, 212–237.
go back to reference Winter, B., Marghetis, T., & Matlock, T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209–224.PubMedCrossRef Winter, B., Marghetis, T., & Matlock, T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209–224.PubMedCrossRef
go back to reference Xuan, B., Chen, X. C., He, S., & Zhang, D. R. (2009). Numerical magnitude modulates temporal comparison: An ERP study. Brain Research, 1269, 135–142.PubMedCrossRef Xuan, B., Chen, X. C., He, S., & Zhang, D. R. (2009). Numerical magnitude modulates temporal comparison: An ERP study. Brain Research, 1269, 135–142.PubMedCrossRef
Metagegevens
Titel
The influence of children’s mathematical competence on performance in mental number line, time knowledge and time perception
Auteurs
Mohammad Ali Nazari
Saied Sabaghypour
Mina Pezhmanfard
Kiana Azizi
Shahram Vahedi
Publicatiedatum
04-07-2020
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01380-7

Andere artikelen Uitgave 5/2021

Psychological Research 5/2021 Naar de uitgave