Skip to main content
Top
Gepubliceerd in: Psychological Research 7/2021

30-10-2020 | Original Article

Processing of numerical representation of fingers depends on their location in space

Auteurs: Sébastien Vanstavel, Yann Coello, Sandrine Mejias

Gepubliceerd in: Psychological Research | Uitgave 7/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Fingers can express quantities and thus contribute to the acquisition and manipulation of numbers as well as the development of arithmetical skills. As embodied entities, the processing of finger numerical configurations should, therefore, be facilitated when they match shared cultural representations and are presented close to the body. To investigate these issues, the present study investigated whether canonical finger configurations are processed faster than noncanonical configurations or spatially matched dot configurations, taking into account their location in the peripersonal or the extrapersonal space. Analysis of verbal responses to the enumeration of small and large numerosities showed that participants (N = 30) processed small numerosities faster than large ones and dots faster than finger configurations despite visuo-spatial matching. Canonical configurations were also processed faster than noncanonical configurations but for finger numerical stimuli only. Furthermore, the difference in response time between dots and fingers processing was greater when the stimuli were located in the peripersonal space than in the extrapersonal space. As a whole, the data suggest that, due to their motor nature, finger numerical configurations are not processed as simple visual stimuli but in relation to corporal and cultural counting habits, in agreement with the embodied framework of numerical cognition.
Literatuur
go back to reference Andres, M., Olivier, E., & Badets, A. (2008). Actions, words, and numbers a motor contribution to semantic processing ? Association for Psychological Science, 17(5), 313–317. Andres, M., Olivier, E., & Badets, A. (2008). Actions, words, and numbers a motor contribution to semantic processing ? Association for Psychological Science, 17(5), 313–317.
go back to reference Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning. Journal of Mathematics Teacher Education, 9(1), 33–52.CrossRef Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning. Journal of Mathematics Teacher Education, 9(1), 33–52.CrossRef
go back to reference Ardila, A., Concha, M., & Rosselli, M. (2000). Angular gyrus syndrome revisited: Acalculia, finger agnosia, right-left disorientation and semantic aphasia. Aphasiology, 14(7), 743–754.CrossRef Ardila, A., Concha, M., & Rosselli, M. (2000). Angular gyrus syndrome revisited: Acalculia, finger agnosia, right-left disorientation and semantic aphasia. Aphasiology, 14(7), 743–754.CrossRef
go back to reference Broaders, S. C., Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2007). Making children gesture brings out implicit knowledge and leads to learning. Journal of Experimental Psychology: General, 136(4), 539.CrossRef Broaders, S. C., Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2007). Making children gesture brings out implicit knowledge and leads to learning. Journal of Experimental Psychology: General, 136(4), 539.CrossRef
go back to reference Butterworth, B. (1999a). The Mathematical Brain. Macmillan. Butterworth, B. (1999a). The Mathematical Brain. Macmillan.
go back to reference Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18.PubMedCrossRef Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18.PubMedCrossRef
go back to reference Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 1047–1058.PubMedCrossRef Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 1047–1058.PubMedCrossRef
go back to reference De Jong, B. M., Van Zomeren, A. H., Willemsen, A. T. M., & Paans, A. M. J. (1996). Brain activity related to serial cognitive performance resembles circuitry of higher order motor control. Experimental Brain Research, 109(1), 136–140.PubMedCrossRef De Jong, B. M., Van Zomeren, A. H., Willemsen, A. T. M., & Paans, A. M. J. (1996). Brain activity related to serial cognitive performance resembles circuitry of higher order motor control. Experimental Brain Research, 109(1), 136–140.PubMedCrossRef
go back to reference Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47–68.PubMedCrossRef Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47–68.PubMedCrossRef
go back to reference di Pellegrino, G., & Làdavas, E. (2015). Peripersonal space in the brain. Neuropsychologia, 66, 126–133.PubMedCrossRef di Pellegrino, G., & Làdavas, E. (2015). Peripersonal space in the brain. Neuropsychologia, 66, 126–133.PubMedCrossRef
go back to reference Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392.PubMedCrossRef Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392.PubMedCrossRef
go back to reference Fischer, M. H., & Coello, Y. (2016). Foundations of embodied cognition: Perceptual and emotional embodiment. UK: Routledge, Taylor & Francis Group. Fischer, M. H., & Coello, Y. (2016). Foundations of embodied cognition: Perceptual and emotional embodiment. UK: Routledge, Taylor & Francis Group.
go back to reference Fuson, K. C. (1982). An analysis of the counting-on solution procedure in addition. Addition and subtraction: A cognitive perspective, 67–81. Fuson, K. C. (1982). An analysis of the counting-on solution procedure in addition. Addition and subtraction: A cognitive perspective, 67–81.
go back to reference Fuson, K. C. (1988). Book review: Children’s counting and concepts of number. British Journal of Developmental Psychology, 6, 395–397.CrossRef Fuson, K. C. (1988). Book review: Children’s counting and concepts of number. British Journal of Developmental Psychology, 6, 395–397.CrossRef
go back to reference Fuson, K. C., Richards, J., & Briars, D. J. (1982). The acquisition and elaboration of the number word sequence. Children’s logical and mathematical cognition (pp. 33–92). New York: Springer.CrossRef Fuson, K. C., Richards, J., & Briars, D. J. (1982). The acquisition and elaboration of the number word sequence. Children’s logical and mathematical cognition (pp. 33–92). New York: Springer.CrossRef
go back to reference Geary, D. C. (1994). Children’s mathematical development: Research and practical applications. Washington: American Psychological Association.CrossRef Geary, D. C. (1994). Children’s mathematical development: Research and practical applications. Washington: American Psychological Association.CrossRef
go back to reference Gelman, R., & Gallistel, C. R. (1978). The child’s concept of number. Cambridge: Harvard. Gelman, R., & Gallistel, C. R. (1978). The child’s concept of number. Cambridge: Harvard.
go back to reference Gerstmann, J. (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia: Local diagnostic value. Archives of Neurology & Psychiatry, 44(2), 398–408.CrossRef Gerstmann, J. (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia: Local diagnostic value. Archives of Neurology & Psychiatry, 44(2), 398–408.CrossRef
go back to reference Göbel, S. M., Johansen-Berg, H., Behrens, T., & Rushworth, M. F. S. (2004). Response-selection-related parietal activation during number comparison. Journal of Cognitive Neuroscience, 16(9), 1536–1551.PubMedCrossRef Göbel, S. M., Johansen-Berg, H., Behrens, T., & Rushworth, M. F. S. (2004). Response-selection-related parietal activation during number comparison. Journal of Cognitive Neuroscience, 16(9), 1536–1551.PubMedCrossRef
go back to reference Hanakawa, T., Honda, M., Okada, T., Fukuyama, H., & Shibasaki, H. (2003). Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks: A functional magnetic resonance imaging study. Neuroscience Letters, 347(3), 199–201.PubMedCrossRef Hanakawa, T., Honda, M., Okada, T., Fukuyama, H., & Shibasaki, H. (2003). Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks: A functional magnetic resonance imaging study. Neuroscience Letters, 347(3), 199–201.PubMedCrossRef
go back to reference Hughes, M. (1986). Children and number: Difficulties in learning mathematics. New Jersey: Wiley-Blackwell. Hughes, M. (1986). Children and number: Difficulties in learning mathematics. New Jersey: Wiley-Blackwell.
go back to reference Iachini, T., Coello, Y., Frassinetti, F., Senese, V. P., Galante, F., & Ruggiero, G. (2016). Peripersonal and interpersonal space in virtual and real environments: Effects of gender and age. Journal of Environmental Psychology, 45, 154–164.CrossRef Iachini, T., Coello, Y., Frassinetti, F., Senese, V. P., Galante, F., & Ruggiero, G. (2016). Peripersonal and interpersonal space in virtual and real environments: Effects of gender and age. Journal of Environmental Psychology, 45, 154–164.CrossRef
go back to reference Ifrah, G. (1981). Histoire universelle des chiffres. Paris: Seghers. Ifrah, G. (1981). Histoire universelle des chiffres. Paris: Seghers.
go back to reference Jäncke, L., Loose, R., Lutz, K., Specht, K., & Shah, N. J. (2000). Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research, 10(1–2), 51–66.PubMedCrossRef Jäncke, L., Loose, R., Lutz, K., Specht, K., & Shah, N. J. (2000). Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research, 10(1–2), 51–66.PubMedCrossRef
go back to reference Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. European Journal of Neuroscience, 18(12), 3375–3387.CrossRefPubMed Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. European Journal of Neuroscience, 18(12), 3375–3387.CrossRefPubMed
go back to reference Làdavas, E. (2015). Neuropsychologia peripersonal space in the brain. Neuropsychologia, 66, 126–133.PubMedCrossRef Làdavas, E. (2015). Neuropsychologia peripersonal space in the brain. Neuropsychologia, 66, 126–133.PubMedCrossRef
go back to reference Liu, X., Wang, H., Corbly, C. R., Zhang, J., & Joseph, J. E. (2006). The involvement of the inferior parietal cortex in the numerical Stroop effect and the distance effect in a two-digit number comparison task. Journal of Cognitive Neuroscience, 18(9), 1518–1530.PubMedCrossRef Liu, X., Wang, H., Corbly, C. R., Zhang, J., & Joseph, J. E. (2006). The involvement of the inferior parietal cortex in the numerical Stroop effect and the distance effect in a two-digit number comparison task. Journal of Cognitive Neuroscience, 18(9), 1518–1530.PubMedCrossRef
go back to reference Mayer, E., Martory, M.-D., Pegna, A. J., Landis, T., Delavelle, J., & Annoni, J.-M. (1999). A pure case of Gerstmann syndrome with a subangular lesion. Brain, 122(6), 1107–1120.PubMedCrossRef Mayer, E., Martory, M.-D., Pegna, A. J., Landis, T., Delavelle, J., & Annoni, J.-M. (1999). A pure case of Gerstmann syndrome with a subangular lesion. Brain, 122(6), 1107–1120.PubMedCrossRef
go back to reference Mejias, S., Grégoire, J., & Noël, M.-P. (2012). Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 22(1), 164–170.CrossRef Mejias, S., Grégoire, J., & Noël, M.-P. (2012). Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 22(1), 164–170.CrossRef
go back to reference MuMIn, B. K. (2018). Multi-model inference. R package version 1.15. 6.; 2016. MuMIn, B. K. (2018). Multi-model inference. R package version 1.15. 6.; 2016.
go back to reference Naccache, L., & Dehaene, S. (2001). The priming method: imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. Cerebral Cortex, 11(10), 966–974.PubMedCrossRef Naccache, L., & Dehaene, S. (2001). The priming method: imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. Cerebral Cortex, 11(10), 966–974.PubMedCrossRef
go back to reference Noël, M. P. (2005). Finger gnosia: a predictor of numerical abilities in children? Child Neuropsychology, 11, 413–430.PubMedCrossRef Noël, M. P. (2005). Finger gnosia: a predictor of numerical abilities in children? Child Neuropsychology, 11, 413–430.PubMedCrossRef
go back to reference Numminen, J., Schürmann, M., Hiltunen, J., Joensuu, R., Jousmäki, V., Koskinen, S. K., et al. (2004). Cortical activation during a spatiotemporal tactile comparison task. Neuroimage, 22(2), 815–821.PubMedCrossRef Numminen, J., Schürmann, M., Hiltunen, J., Joensuu, R., Jousmäki, V., Koskinen, S. K., et al. (2004). Cortical activation during a spatiotemporal tactile comparison task. Neuroimage, 22(2), 815–821.PubMedCrossRef
go back to reference Penner-Wilger, M., & Anderson, M. L. (2013). The relation between finger gnosis and mathematical ability: Why redeployment of neural circuits best explains the finding. Frontiers in psychology, 4, 877.PubMedPubMedCentralCrossRef Penner-Wilger, M., & Anderson, M. L. (2013). The relation between finger gnosis and mathematical ability: Why redeployment of neural circuits best explains the finding. Frontiers in psychology, 4, 877.PubMedPubMedCentralCrossRef
go back to reference Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15(2), 435–446.PubMedCrossRef Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15(2), 435–446.PubMedCrossRef
go back to reference Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503.PubMedCrossRef Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503.PubMedCrossRef
go back to reference Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993.PubMedCrossRef Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993.PubMedCrossRef
go back to reference Rusconi, E., Pinel, P., Dehaene, S., & Kleinschmidt, A. (2010). The enigma of Gerstmann’s syndrome revisited: a telling tale of the vicissitudes of neuropsychology. Brain, 133(2), 320–332.PubMedCrossRef Rusconi, E., Pinel, P., Dehaene, S., & Kleinschmidt, A. (2010). The enigma of Gerstmann’s syndrome revisited: a telling tale of the vicissitudes of neuropsychology. Brain, 133(2), 320–332.PubMedCrossRef
go back to reference Sato, T., Ito, M., Suto, T., Kameyama, M., Suda, M., Yamagishi, Y., et al. (2007). Time courses of brain activation and their implications for function: a multichannel near-infrared spectroscopy study during finger tapping. Neuroscience Research, 58(3), 297–304.PubMedCrossRef Sato, T., Ito, M., Suto, T., Kameyama, M., Suda, M., Yamagishi, Y., et al. (2007). Time courses of brain activation and their implications for function: a multichannel near-infrared spectroscopy study during finger tapping. Neuroscience Research, 58(3), 297–304.PubMedCrossRef
go back to reference Sixtus, E., Lindemann, O., & Fischer, M. H. (2020). Stimulating numbers: Signatures of finger counting in numerosity processing. Psychological Research Psychologische Forschung, 84(1), 152–167.PubMedCrossRef Sixtus, E., Lindemann, O., & Fischer, M. H. (2020). Stimulating numbers: Signatures of finger counting in numerosity processing. Psychological Research Psychologische Forschung, 84(1), 152–167.PubMedCrossRef
go back to reference Stark, Z., McGillivray, G., Sampson, A., Palma-Dias, R., Edwards, A., Said, J. M., et al. (2015). Apert syndrome: temporal lobe abnormalities on fetal brain imaging. Prenatal diagnosis, 35(2), 179–182.PubMedCrossRef Stark, Z., McGillivray, G., Sampson, A., Palma-Dias, R., Edwards, A., Said, J. M., et al. (2015). Apert syndrome: temporal lobe abnormalities on fetal brain imaging. Prenatal diagnosis, 35(2), 179–182.PubMedCrossRef
go back to reference Van Rinsveld, A., Guillaume, M., Kohler, P. J., Schiltz, C., Gevers, W., & Content, A. (2020). The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of the National Academy of Sciences, 117(11), 5726–5732.CrossRef Van Rinsveld, A., Guillaume, M., Kohler, P. J., Schiltz, C., Gevers, W., & Content, A. (2020). The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of the National Academy of Sciences, 117(11), 5726–5732.CrossRef
go back to reference Venkatraman, V., Ansari, D., & Chee, M. W. L. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43(5), 744–753.PubMedCrossRef Venkatraman, V., Ansari, D., & Chee, M. W. L. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43(5), 744–753.PubMedCrossRef
go back to reference Wamain, Y., Gabrielli, F., & Coello, Y. (2016). In press Cortex EEG µ rhythm in virtual reality reveals that motor coding of visual objects in peripersonal space is task dependent. Cortex, 74, 1–36.CrossRef Wamain, Y., Gabrielli, F., & Coello, Y. (2016). In press Cortex EEG µ rhythm in virtual reality reveals that motor coding of visual objects in peripersonal space is task dependent. Cortex, 74, 1–36.CrossRef
go back to reference Wiese, H. (2003a). Numbers, language, and the human mind. Cambridge: Cambridge University Press.CrossRef Wiese, H. (2003a). Numbers, language, and the human mind. Cambridge: Cambridge University Press.CrossRef
go back to reference Wiese, H. (2003b). Iconic and non-iconic stages in number development: The role of language. Trends in Cognitive Sciences, 7(9), 385–390.PubMedCrossRef Wiese, H. (2003b). Iconic and non-iconic stages in number development: The role of language. Trends in Cognitive Sciences, 7(9), 385–390.PubMedCrossRef
go back to reference Wilkie, A. O. M., Slaney, S. F., Oldridge, M., Poole, M. D., Ashworth, G. J., Hockley, A. D., et al. (1995). Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genetics, 9(2), 165–172.PubMedCrossRef Wilkie, A. O. M., Slaney, S. F., Oldridge, M., Poole, M. D., Ashworth, G. J., Hockley, A. D., et al. (1995). Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genetics, 9(2), 165–172.PubMedCrossRef
go back to reference World Medical Association, G. A. (2014). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. The Journal of the American College of Dentists, 81(3), 14. World Medical Association, G. A. (2014). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. The Journal of the American College of Dentists, 81(3), 14.
go back to reference Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13(2), 314–327.PubMedCrossRef Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13(2), 314–327.PubMedCrossRef
Metagegevens
Titel
Processing of numerical representation of fingers depends on their location in space
Auteurs
Sébastien Vanstavel
Yann Coello
Sandrine Mejias
Publicatiedatum
30-10-2020
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 7/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01436-8

Andere artikelen Uitgave 7/2021

Psychological Research 7/2021 Naar de uitgave