Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2012

01-07-2012 | Original Article

Neural theory for the perception of causal actions

Auteurs: Falk Fleischer, Andrea Christensen, Vittorio Caggiano, Peter Thier, Martin A. Giese

Gepubliceerd in: Psychological Research | Uitgave 4/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267–278.PubMedCrossRef Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267–278.PubMedCrossRef
go back to reference Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113(3), 329–349.PubMedCrossRef Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113(3), 329–349.PubMedCrossRef
go back to reference Barraclough, N. E., Keith, R. H., Xiao, D., Oram, M. W., & Perrett, D. I. (2009). Visual adaptation to goal-directed hand actions. Journal of Cognitive Neuroscience, 21(9), 1806–1820.PubMedCrossRef Barraclough, N. E., Keith, R. H., Xiao, D., Oram, M. W., & Perrett, D. I. (2009). Visual adaptation to goal-directed hand actions. Journal of Cognitive Neuroscience, 21(9), 1806–1820.PubMedCrossRef
go back to reference Barrett, H. C., Todd, P. M., Miller, G. F., & Blythe, P. (2005). Accurate judgments of intention from motion alone: A cross-cultural study. Evolution and Human Behavior, 26, 313–331.CrossRef Barrett, H. C., Todd, P. M., Miller, G. F., & Blythe, P. (2005). Accurate judgments of intention from motion alone: A cross-cultural study. Evolution and Human Behavior, 26, 313–331.CrossRef
go back to reference Bassili, F. (1976). Temporal and spatial contingencies in the perception of social events. Journal of Personality and Social Psychology, 33(6), 680–685.CrossRef Bassili, F. (1976). Temporal and spatial contingencies in the perception of social events. Journal of Personality and Social Psychology, 33(6), 680–685.CrossRef
go back to reference Beardsley, S. A., & Vaina, L. M. (2001). A laterally interconnected neural architecture in MST accounts for psychophysical discrimination of complex motion patterns. Journal of Computational Neuroscience, 10(3), 255–280.PubMedCrossRef Beardsley, S. A., & Vaina, L. M. (2001). A laterally interconnected neural architecture in MST accounts for psychophysical discrimination of complex motion patterns. Journal of Computational Neuroscience, 10(3), 255–280.PubMedCrossRef
go back to reference Beasley, N. A. (1968). The extent of individual differences in the perception of causality. Canadian Journal of Psychology, 22(5), 399–407.PubMedCrossRef Beasley, N. A. (1968). The extent of individual differences in the perception of causality. Canadian Journal of Psychology, 22(5), 399–407.PubMedCrossRef
go back to reference Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.PubMedCrossRef Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.PubMedCrossRef
go back to reference Blythe, P. W., Todd, P. M., & Miller, G. F. (1999). How motion reveals intention: Categorizing social interactions. In G. Gigerenzer & P. M. Todd (Eds.), Simple heuristics that make us smart (pp. 257–285). Oxford: Oxford University Press. Blythe, P. W., Todd, P. M., & Miller, G. F. (1999). How motion reveals intention: Categorizing social interactions. In G. Gigerenzer & P. M. Todd (Eds.), Simple heuristics that make us smart (pp. 257–285). Oxford: Oxford University Press.
go back to reference Bonaiuto, J., & Arbib, M. A. (2010). Extending the mirror neuron system model, II: What did I just do? A new role for mirror neurons. Biological Cybernetics, 102(4), 341–359.PubMedCrossRef Bonaiuto, J., & Arbib, M. A. (2010). Extending the mirror neuron system model, II: What did I just do? A new role for mirror neurons. Biological Cybernetics, 102(4), 341–359.PubMedCrossRef
go back to reference Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17(24), 2117–2121.PubMedCrossRef Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17(24), 2117–2121.PubMedCrossRef
go back to reference Castelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage, 12(3), 314–325.PubMedCrossRef Castelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage, 12(3), 314–325.PubMedCrossRef
go back to reference Chersi, F. (2011). Neural mechanisms and models underlying joint action. Experimental Brain Research, 211(3–4), 643–653.CrossRef Chersi, F. (2011). Neural mechanisms and models underlying joint action. Experimental Brain Research, 211(3–4), 643–653.CrossRef
go back to reference Choi, H., & Scholl, B. J. (2006). Measuring causal perception: Connections to representational momentum? Acta psychologica (Amst), 123(1–2), 91–111.CrossRef Choi, H., & Scholl, B. J. (2006). Measuring causal perception: Connections to representational momentum? Acta psychologica (Amst), 123(1–2), 91–111.CrossRef
go back to reference Dasser, V., Ulbaek, I., & Premack, D. (1989). The perception of intention. Science, 243(4889), 365–367.PubMedCrossRef Dasser, V., Ulbaek, I., & Premack, D. (1989). The perception of intention. Science, 243(4889), 365–367.PubMedCrossRef
go back to reference de Lange, F. P., Spronk, M., Willems, R. M., Toni, I., & Bekkering, H. (2008). Complementary systems for understanding action intentions. Current Biology, 18(6), 454–457.PubMedCrossRef de Lange, F. P., Spronk, M., Willems, R. M., Toni, I., & Bekkering, H. (2008). Complementary systems for understanding action intentions. Current Biology, 18(6), 454–457.PubMedCrossRef
go back to reference Deco, G., & Rolls, E. T. (2005). Attention, short-term memory, and action selection: A unifying theory. Progress in Neurobiology, 76(4), 236–256.PubMedCrossRef Deco, G., & Rolls, E. T. (2005). Attention, short-term memory, and action selection: A unifying theory. Progress in Neurobiology, 76(4), 236–256.PubMedCrossRef
go back to reference Di Carlo, J. J., & Maunsell, J. H. R. (2003). Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object. Neurophysiology, 89, 3264–3278.CrossRef Di Carlo, J. J., & Maunsell, J. H. R. (2003). Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object. Neurophysiology, 89, 3264–3278.CrossRef
go back to reference Dittrich, W. H., & Lea, S. E. (1994). Visual perception of intentional motion. Perception, 23(3), 253–268.PubMedCrossRef Dittrich, W. H., & Lea, S. E. (1994). Visual perception of intentional motion. Perception, 23(3), 253–268.PubMedCrossRef
go back to reference Fleischer, F., Casile, A., & Giese, M. A. (2009). Bio-inspired approach for the recognition of goal-directed hand actions. In X. Jiang & N. Petkov (Eds.), Conference on Computer Analysis of Images and Patterns (CAIP), LCNS (Vol. 5702, pp. 714–722). Fleischer, F., Casile, A., & Giese, M. A. (2009). Bio-inspired approach for the recognition of goal-directed hand actions. In X. Jiang & N. Petkov (Eds.), Conference on Computer Analysis of Images and Patterns (CAIP), LCNS (Vol. 5702, pp. 714–722).
go back to reference Fleischer, F., & Giese, M. A. (2010). Computational Mechanisms of the Visual Processing of Action Stimuli. In K. Johnson & M. Shiffrar (Eds.), Perception of the human body in motion: Findings, theory and practice (Vol. in press). New York: Oxford University Press. Fleischer, F., & Giese, M. A. (2010). Computational Mechanisms of the Visual Processing of Action Stimuli. In K. Johnson & M. Shiffrar (Eds.), Perception of the human body in motion: Findings, theory and practice (Vol. in press). New York: Oxford University Press.
go back to reference Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 29, 662–667. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 29, 662–667.
go back to reference Fonlupt, P. (2003). Perception and judgement of physical causality involve different brain structures. Brain Research. Cognitive Brain Research, 17(2), 248–254.PubMedCrossRef Fonlupt, P. (2003). Perception and judgement of physical causality involve different brain structures. Brain Research. Cognitive Brain Research, 17(2), 248–254.PubMedCrossRef
go back to reference Frith, C. D., & Frith, U. (1999). Interacting minds—a biological basis. Science, 286(5445), 1692–1695.PubMedCrossRef Frith, C. D., & Frith, U. (1999). Interacting minds—a biological basis. Science, 286(5445), 1692–1695.PubMedCrossRef
go back to reference Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 358(1431), 459–473.PubMedCrossRef Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 358(1431), 459–473.PubMedCrossRef
go back to reference Fugelsang, J. A., Roser, M. E., Corballis, P. M., Gazzaniga, M. S., & Dunbar, K. N. (2005). Brain mechanisms underlying perceptual causality. Brain Research. Cognitive Brain Research, 24(1), 41–47.PubMedCrossRef Fugelsang, J. A., Roser, M. E., Corballis, P. M., Gazzaniga, M. S., & Dunbar, K. N. (2005). Brain mechanisms underlying perceptual causality. Brain Research. Cognitive Brain Research, 24(1), 41–47.PubMedCrossRef
go back to reference Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192.PubMedCrossRef Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192.PubMedCrossRef
go back to reference Hamilton, A. F., & Grafton, S. T. (2008). Action outcomes are represented in human inferior frontoparietal cortex. Cerebral Cortex, 18(5), 1160–1168.PubMedCrossRef Hamilton, A. F., & Grafton, S. T. (2008). Action outcomes are represented in human inferior frontoparietal cortex. Cerebral Cortex, 18(5), 1160–1168.PubMedCrossRef
go back to reference Heider, F., & Simmel, M. (1944). An experimental study of apparent behavior. American Journal of Psychology, 57, 243–249.CrossRef Heider, F., & Simmel, M. (1944). An experimental study of apparent behavior. American Journal of Psychology, 57, 243–249.CrossRef
go back to reference Jastorff, J., Clavagnier, S., Gergely, G., & Orban, G. A. (2011). Neural mechanisms of understanding rational actions: Middle temporal gyrus activation by contextual violation. Cerebral Cortex, 21(2), 318–329.PubMedCrossRef Jastorff, J., Clavagnier, S., Gergely, G., & Orban, G. A. (2011). Neural mechanisms of understanding rational actions: Middle temporal gyrus activation by contextual violation. Cerebral Cortex, 21(2), 318–329.PubMedCrossRef
go back to reference Jellema, T., & Perrett, D. I. (2006). Neural representations of perceived bodily actions using a categorical frame of reference. Neuropsychologia, 44(9), 1535–1546.PubMedCrossRef Jellema, T., & Perrett, D. I. (2006). Neural representations of perceived bodily actions using a categorical frame of reference. Neuropsychologia, 44(9), 1535–1546.PubMedCrossRef
go back to reference Kanizsa, G., & Vicario, G. (1968). The perception of intentional reaction. In G. Kanizsa & G. Vicario (Eds.), Experimental research on perception (pp. 71–126). Trieste: University of Trieste. Kanizsa, G., & Vicario, G. (1968). The perception of intentional reaction. In G. Kanizsa & G. Vicario (Eds.), Experimental research on perception (pp. 71–126). Trieste: University of Trieste.
go back to reference Koenderink, J. J., van Doorn, A. J., & van de Grind, W. A. (1985). Spatial and temporal parameters of motion detection in the peripheral visual field. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2(2), 252–259.CrossRef Koenderink, J. J., van Doorn, A. J., & van de Grind, W. A. (1985). Spatial and temporal parameters of motion detection in the peripheral visual field. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2(2), 252–259.CrossRef
go back to reference Kourtzi, Z., & Connor, C. E. (2011). Neural representations for object perception: Structure, category, and adaptive coding. Annual Review of Neuroscience, 34, 45–67.PubMedCrossRef Kourtzi, Z., & Connor, C. E. (2011). Neural representations for object perception: Structure, category, and adaptive coding. Annual Review of Neuroscience, 34, 45–67.PubMedCrossRef
go back to reference Leslie, A. M., & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25(3), 265–288.PubMedCrossRef Leslie, A. M., & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25(3), 265–288.PubMedCrossRef
go back to reference Martin, A., & Weisberg, J. (2003). Neural foundations for understanding social and mechanical concepts. Cognitive Neuropsychology, 20(3–6), 575–587.PubMedCrossRef Martin, A., & Weisberg, J. (2003). Neural foundations for understanding social and mechanical concepts. Cognitive Neuropsychology, 20(3–6), 575–587.PubMedCrossRef
go back to reference McAleer, P., & Pollick, F. E. (2008). Understanding intention from minimal displays of human activity. Behavior Research Methods, 40(3), 830–839.PubMedCrossRef McAleer, P., & Pollick, F. E. (2008). Understanding intention from minimal displays of human activity. Behavior Research Methods, 40(3), 830–839.PubMedCrossRef
go back to reference Michotte, A. (1946/1963). The Perception of Causality (Translated by T.R. Miles and E. Miles). London: Methuen: Basic Books. Michotte, A. (1946/1963). The Perception of Causality (Translated by T.R. Miles and E. Miles). London: Methuen: Basic Books.
go back to reference Nelissen, K., Borra, E., Gerbella, M., Rozzi, S., Luppino, G., Vanduffel, W., et al. (2011). Action observation circuits in the macaque monkey cortex. Journal of Neuroscience, 31(10), 3743–3756.PubMedCrossRef Nelissen, K., Borra, E., Gerbella, M., Rozzi, S., Luppino, G., Vanduffel, W., et al. (2011). Action observation circuits in the macaque monkey cortex. Journal of Neuroscience, 31(10), 3743–3756.PubMedCrossRef
go back to reference Oakes, L. M., & Kannass, K. N. (1999). That’s the way the ball bounces: Infants’ and adults’ perception of spatial and temporal contiguity in collisions involving bouncing balls. Developmental Science, 2(1), 86–101.CrossRef Oakes, L. M., & Kannass, K. N. (1999). That’s the way the ball bounces: Infants’ and adults’ perception of spatial and temporal contiguity in collisions involving bouncing balls. Developmental Science, 2(1), 86–101.CrossRef
go back to reference Ohnishi, T., Moriguchi, Y., Matsuda, H., Mori, T., Hirakata, M., Imabayashi, E., et al. (2004). The neural network for the mirror system and mentalizing in normally developed children: An fMRI study. NeuroReport, 15(9), 1483–1487.PubMedCrossRef Ohnishi, T., Moriguchi, Y., Matsuda, H., Mori, T., Hirakata, M., Imabayashi, E., et al. (2004). The neural network for the mirror system and mentalizing in normally developed children: An fMRI study. NeuroReport, 15(9), 1483–1487.PubMedCrossRef
go back to reference Op De Beeck, H., & Vogels, R. (2000). Spatial sensitivity of macaque inferior temporal neurons. Journal of Comparative Neurology, 426(4), 505–518.PubMedCrossRef Op De Beeck, H., & Vogels, R. (2000). Spatial sensitivity of macaque inferior temporal neurons. Journal of Comparative Neurology, 426(4), 505–518.PubMedCrossRef
go back to reference Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: A computationally guided review. Neural Networks, 19(3), 254–271.PubMedCrossRef Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: A computationally guided review. Neural Networks, 19(3), 254–271.PubMedCrossRef
go back to reference Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., Chitty, A. J., Hietanen, J. K., & Ortega, J. E. (1989). Frameworks of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology, 146, 87–113. Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., Chitty, A. J., Hietanen, J. K., & Ortega, J. E. (1989). Frameworks of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology, 146, 87–113.
go back to reference Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a ‘low road’ to ‘many roads’ of evaluating biological significance. Nature Reviews Neuroscience, 11(11), 773–783.PubMedCrossRef Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a ‘low road’ to ‘many roads’ of evaluating biological significance. Nature Reviews Neuroscience, 11(11), 773–783.PubMedCrossRef
go back to reference Petroni, A., Baguear, F., & Della-Maggiore, V. (2010). Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology, 104(4), 1867–1871.PubMedCrossRef Petroni, A., Baguear, F., & Della-Maggiore, V. (2010). Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology, 104(4), 1867–1871.PubMedCrossRef
go back to reference Pouget, A., & Sejnowski, T. J. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9(2), 222–237.CrossRef Pouget, A., & Sejnowski, T. J. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9(2), 222–237.CrossRef
go back to reference Prinz, W. (1997). Perception and Action Planning. European Journal of Cognitive Psychology, 9(2), 129–154.CrossRef Prinz, W. (1997). Perception and Action Planning. European Journal of Cognitive Psychology, 9(2), 129–154.CrossRef
go back to reference Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17(14), 1201–1207.PubMedCrossRef Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17(14), 1201–1207.PubMedCrossRef
go back to reference Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.PubMedCrossRef Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.PubMedCrossRef
go back to reference Rips, L. J. (2011). Split identity: Intransitive judgments of the identity of objects. Cognition, 119(3), 356–373.PubMedCrossRef Rips, L. J. (2011). Split identity: Intransitive judgments of the identity of objects. Cognition, 119(3), 356–373.PubMedCrossRef
go back to reference Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661–670.PubMedCrossRef Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661–670.PubMedCrossRef
go back to reference Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parietofrontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264–274.PubMedCrossRef Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parietofrontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264–274.PubMedCrossRef
go back to reference Rochat, P., Morgan, R., & Carpenter, M. (1997). Young infants’ sensitivity to movement information specifying social causality. Cognitive Development, 12, 537–561.CrossRef Rochat, P., Morgan, R., & Carpenter, M. (1997). Young infants’ sensitivity to movement information specifying social causality. Cognitive Development, 12, 537–561.CrossRef
go back to reference Roser, M. E., Fugelsang, J. A., Dunbar, K. N., Corballis, P. M., & Gazzaniga, M. S. (2005). Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology, 19(5), 591–602.PubMedCrossRef Roser, M. E., Fugelsang, J. A., Dunbar, K. N., Corballis, P. M., & Gazzaniga, M. S. (2005). Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology, 19(5), 591–602.PubMedCrossRef
go back to reference Salinas, E., & Abbott, L. F. (1995). Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 15(10), 6461–6474.PubMed Salinas, E., & Abbott, L. F. (1995). Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 15(10), 6461–6474.PubMed
go back to reference Saxe, R., & Carey, S. (2006). The perception of causality in infancy. Acta Psychologica (Amst), 123(1–2), 144–165.CrossRef Saxe, R., & Carey, S. (2006). The perception of causality in infancy. Acta Psychologica (Amst), 123(1–2), 144–165.CrossRef
go back to reference Saxe, R., Xiao, D. K., Kovacs, G., Perrett, D. I., & Kanwisher, N. (2004). A region of right posterior superior temporal sulcus responds to observed intentional actions. Neuropsychologia, 42(11), 1435–1446.PubMedCrossRef Saxe, R., Xiao, D. K., Kovacs, G., Perrett, D. I., & Kanwisher, N. (2004). A region of right posterior superior temporal sulcus responds to observed intentional actions. Neuropsychologia, 42(11), 1435–1446.PubMedCrossRef
go back to reference Schlottmann, A., & Anderson, N. H. (1993). An information integration approach to phenomenal causality. Memory & Cognition, 21(6), 785–801.CrossRef Schlottmann, A., & Anderson, N. H. (1993). An information integration approach to phenomenal causality. Memory & Cognition, 21(6), 785–801.CrossRef
go back to reference Schlottmann, A., Ray, E. D., Mitchell, A., & Demetriou, N. (2006). Perceived physical and social causality in animated motions: Spontaneous reports and ratings. Acta Psychologica (Amst), 123(1–2), 112–143.CrossRef Schlottmann, A., Ray, E. D., Mitchell, A., & Demetriou, N. (2006). Perceived physical and social causality in animated motions: Spontaneous reports and ratings. Acta Psychologica (Amst), 123(1–2), 112–143.CrossRef
go back to reference Schlottmann, A., & Shanks, D. R. (1992). Evidence for a distinction between judged and perceived causality. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 44(2), 321–342. Schlottmann, A., & Shanks, D. R. (1992). Evidence for a distinction between judged and perceived causality. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 44(2), 321–342.
go back to reference Scholl, B. J., & Tremoulet, P. D. (2000). Perceptual causality and animacy. Trends in Cognitive Sciences, 4(8), 299–309.PubMedCrossRef Scholl, B. J., & Tremoulet, P. D. (2000). Perceptual causality and animacy. Trends in Cognitive Sciences, 4(8), 299–309.PubMedCrossRef
go back to reference Schubotz, R. I., & von Cramon, D. Y. (2004). Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. Journal of Neuroscience, 24(24), 5467–5474.PubMedCrossRef Schubotz, R. I., & von Cramon, D. Y. (2004). Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. Journal of Neuroscience, 24(24), 5467–5474.PubMedCrossRef
go back to reference Schultz, J., Imamizu, H., Kawato, M., & Frith, C. D. (2004). Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. Journal of Cognitive Neuroscience, 16(10), 1695–1705.PubMedCrossRef Schultz, J., Imamizu, H., Kawato, M., & Frith, C. D. (2004). Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. Journal of Cognitive Neuroscience, 16(10), 1695–1705.PubMedCrossRef
go back to reference Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 411–426.PubMedCrossRef Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 411–426.PubMedCrossRef
go back to reference Smith, A. T., & Snowden, R. J. (Eds.). (1994). Visual detection of motion. London: Academic Press Limited. Smith, A. T., & Snowden, R. J. (Eds.). (1994). Visual detection of motion. London: Academic Press Limited.
go back to reference Straube, B., & Chatterjee, A. (2010). Space and time in perceptual causality. Frontiers in Human Neuroscience, 4, 28.PubMed Straube, B., & Chatterjee, A. (2010). Space and time in perceptual causality. Frontiers in Human Neuroscience, 4, 28.PubMed
go back to reference Tessitore, G., Prevete, R., Catanzariti, E., & Tamburrini, G. (2010). From motor to sensory processing in mirror neuron computational modelling. Biological Cybernetics, 103(6), 471–485.PubMedCrossRef Tessitore, G., Prevete, R., Catanzariti, E., & Tamburrini, G. (2010). From motor to sensory processing in mirror neuron computational modelling. Biological Cybernetics, 103(6), 471–485.PubMedCrossRef
go back to reference Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24(5), 295–300.PubMedCrossRef Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24(5), 295–300.PubMedCrossRef
go back to reference Treue, S., & Maunsell, J. H. R. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317–322.PubMedCrossRef Treue, S., & Maunsell, J. H. R. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317–322.PubMedCrossRef
go back to reference Ullman, S. (2007). Object recognition and segmentation by a fragment-based hierarchy. Trends in Cognitive Sciences, 11(2), 58–64.PubMedCrossRef Ullman, S. (2007). Object recognition and segmentation by a fragment-based hierarchy. Trends in Cognitive Sciences, 11(2), 58–64.PubMedCrossRef
go back to reference Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage, 48(3), 564–584.PubMedCrossRef Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage, 48(3), 564–584.PubMedCrossRef
go back to reference White, P. A., & Milne, A. (1997). Phenomenal causality: Impressions of pulling in the visual perception of objects in motion. American Journal of Psychology, 110(4), 573–602.PubMedCrossRef White, P. A., & Milne, A. (1997). Phenomenal causality: Impressions of pulling in the visual perception of objects in motion. American Journal of Psychology, 110(4), 573–602.PubMedCrossRef
Metagegevens
Titel
Neural theory for the perception of causal actions
Auteurs
Falk Fleischer
Andrea Christensen
Vittorio Caggiano
Peter Thier
Martin A. Giese
Publicatiedatum
01-07-2012
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2012
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-012-0437-9

Andere artikelen Uitgave 4/2012

Psychological Research 4/2012 Naar de uitgave