Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2012

01-07-2012 | Original Article

Movement kinematics affect action prediction: comparing human to non-human point-light actions

Auteurs: Waltraud Stadler, Anne Springer, Jim Parkinson, Wolfgang Prinz

Gepubliceerd in: Psychological Research | Uitgave 4/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The influence of movement kinematics on the accuracy of predicting the time course of another individual’s actions was studied. A human point-light shape was animated with human movement (natural condition) and with artificial movement that was more uniform regarding velocity profiles and trajectories (artificial condition). During brief occlusions, the participants predicted the actions in order to judge after occlusion whether the actions were continued coherently in time or shifted to an earlier or later frame. Error rates and reaction times were increased in the artificial compared to the natural condition. The findings suggest a perceptual advantage for movement with a human velocity profile, corresponding to the notion of a close interaction between observed and executed movement. The results are discussed in the framework of the simulation account and alternative interpretations are provided on the basis of correlations between the velocity profiles of natural and artificial movements with prediction performance.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Aglioti, S., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.PubMedCrossRef Aglioti, S., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.PubMedCrossRef
go back to reference Ahlstrom, V., Blake, R., & Ahlstrom, U. (1997). Perception of biological motion. Perception, 26(12), 1539–1548.PubMedCrossRef Ahlstrom, V., Blake, R., & Ahlstrom, U. (1997). Perception of biological motion. Perception, 26(12), 1539–1548.PubMedCrossRef
go back to reference Bisio, A., Stucchi, N., Jacono, M., Fadiga, L., & Pozzo, T. (2010). Automatic versus voluntary motor imitation: effect of visual context and stimulus velocity. PLoS ONE, 5(10), e13506.PubMedCrossRef Bisio, A., Stucchi, N., Jacono, M., Fadiga, L., & Pozzo, T. (2010). Automatic versus voluntary motor imitation: effect of visual context and stimulus velocity. PLoS ONE, 5(10), e13506.PubMedCrossRef
go back to reference Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.PubMedCrossRef Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.PubMedCrossRef
go back to reference Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., et al. (2004). Neural circuits involved in the recognition of actions performed by nonconspecifics: an FMRI study. Journal of Cognitive Neuroscience, 16(1), 114–126.PubMedCrossRef Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., et al. (2004). Neural circuits involved in the recognition of actions performed by nonconspecifics: an FMRI study. Journal of Cognitive Neuroscience, 16(1), 114–126.PubMedCrossRef
go back to reference Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.PubMedCrossRef Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.PubMedCrossRef
go back to reference Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T., & Giese, M. A. (2010). Neuronal encoding of human kinematic invariants during action observation. Cerebral Cortex, 20(7), 1647–1655.PubMedCrossRef Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T., & Giese, M. A. (2010). Neuronal encoding of human kinematic invariants during action observation. Cerebral Cortex, 20(7), 1647–1655.PubMedCrossRef
go back to reference Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69–74.PubMedCrossRef Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69–74.PubMedCrossRef
go back to reference Chaminade, T., Hodgins, J., & Kawato, M. (2007). Anthropomorphism influences perception of computer-animated characters’ actions. Social Cognitive and Affective Neuroscience, 2(3), 206–216.PubMedCrossRef Chaminade, T., Hodgins, J., & Kawato, M. (2007). Anthropomorphism influences perception of computer-animated characters’ actions. Social Cognitive and Affective Neuroscience, 2(3), 206–216.PubMedCrossRef
go back to reference Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31(3), 1257–1267.PubMedCrossRef Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31(3), 1257–1267.PubMedCrossRef
go back to reference Cross, E., Kraemer, D., Hamilton, A., Kelley, W., & Grafton, S. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.PubMedCrossRef Cross, E., Kraemer, D., Hamilton, A., Kelley, W., & Grafton, S. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.PubMedCrossRef
go back to reference Cross, E. S., Liepelt, R., Hamilton, A Fd C, Parkinson, J., Ramsey, R., Stadler, W., et al. (2011). Robotic movement preferentially engages the action observation network. Human Brain Mapping,. doi:10.1002/hbm.21361. Cross, E. S., Liepelt, R., Hamilton, A Fd C, Parkinson, J., Ramsey, R., Stadler, W., et al. (2011). Robotic movement preferentially engages the action observation network. Human Brain Mapping,. doi:10.​1002/​hbm.​21361.
go back to reference Dayan, E., Casile, A., Levit-Binnun, N., Giese, M., Hendler, T., & Flash, T. (2007). Neural representations of kinematic laws of motion: evidence for action-perception coupling. Proceedings of the National academy of Sciences of the United States of America, 104(51), 20582–20587.PubMedCrossRef Dayan, E., Casile, A., Levit-Binnun, N., Giese, M., Hendler, T., & Flash, T. (2007). Neural representations of kinematic laws of motion: evidence for action-perception coupling. Proceedings of the National academy of Sciences of the United States of America, 104(51), 20582–20587.PubMedCrossRef
go back to reference De’Sperati, C., & Viviani, P. (1997). The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements. Journal of Neuroscience, 17(10), 3932–3945.PubMed De’Sperati, C., & Viviani, P. (1997). The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements. Journal of Neuroscience, 17(10), 3932–3945.PubMed
go back to reference Diersch, N., Cross, E. S., Stadler, W., Schütz-Bosbach, S., & Rieger, M. (2011). Representing others' actions: the role of expertise in the aging mind. Psychological Research. doi:10.1007/s00426-011-0404-x. Diersch, N., Cross, E. S., Stadler, W., Schütz-Bosbach, S., & Rieger, M. (2011). Representing others' actions: the role of expertise in the aging mind. Psychological Research. doi:10.​1007/​s00426-011-0404-x.
go back to reference Flash, T., & Hogan, N. (1985). The coordination of arm movements—an experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 1688–1703.PubMed Flash, T., & Hogan, N. (1985). The coordination of arm movements—an experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 1688–1703.PubMed
go back to reference Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593–609.PubMedCrossRef Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593–609.PubMedCrossRef
go back to reference Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501.PubMedCrossRef Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501.PubMedCrossRef
go back to reference Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192.PubMedCrossRef Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192.PubMedCrossRef
go back to reference Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36(Suppl 2), T22–T32.PubMedCrossRef Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36(Suppl 2), T22–T32.PubMedCrossRef
go back to reference Grafton, S., & Hamilton, A. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.PubMedCrossRef Grafton, S., & Hamilton, A. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.PubMedCrossRef
go back to reference Hicheur, H., Vieilledent, S., Richardson, M., Flash, T., & Berthoz, A. (2005). Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Experimental Brain Research, 162(2), 145–154.CrossRef Hicheur, H., Vieilledent, S., Richardson, M., Flash, T., & Berthoz, A. (2005). Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Experimental Brain Research, 162(2), 145–154.CrossRef
go back to reference Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878.PubMedCrossRef Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878.PubMedCrossRef
go back to reference Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the findings. Psychonomic Bulletin & Review, 12(5), 822–851.CrossRef Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the findings. Psychonomic Bulletin & Review, 12(5), 822–851.CrossRef
go back to reference Ivanenko, Y., Grasso, R., Macellari, V., & Lacquaniti, F. (2002). Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. Journal of Neurophysiology, 87(6), 3070–3089.PubMed Ivanenko, Y., Grasso, R., Macellari, V., & Lacquaniti, F. (2002). Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. Journal of Neurophysiology, 87(6), 3070–3089.PubMed
go back to reference Jarraya, M., Amorim, M., & Bardy, B. (2005). Optical flow and viewpoint change modulate the perception and memorization of complex motion. Perception & Psychophysics, 67(6), 951–961.CrossRef Jarraya, M., Amorim, M., & Bardy, B. (2005). Optical flow and viewpoint change modulate the perception and memorization of complex motion. Perception & Psychophysics, 67(6), 951–961.CrossRef
go back to reference Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14(1), S103–S109.PubMedCrossRef Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14(1), S103–S109.PubMedCrossRef
go back to reference Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211.CrossRef Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211.CrossRef
go back to reference Kandel, S., Orliaguet, J. P., & BoÎ, L. J. (2000). Detecting anticipatory events in handwriting movements. Perception, 29(8), 953–964.PubMedCrossRef Kandel, S., Orliaguet, J. P., & BoÎ, L. J. (2000). Detecting anticipatory events in handwriting movements. Perception, 29(8), 953–964.PubMedCrossRef
go back to reference Kilner, J., Friston, K., & Frith, C. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.PubMedCrossRef Kilner, J., Friston, K., & Frith, C. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.PubMedCrossRef
go back to reference Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7(12), 1299–1301.PubMedCrossRef Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7(12), 1299–1301.PubMedCrossRef
go back to reference Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(1–3), 115–130.PubMedCrossRef Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(1–3), 115–130.PubMedCrossRef
go back to reference Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology—Human Perception and Performance, 31(1), 210–220. Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology—Human Perception and Performance, 31(1), 210–220.
go back to reference Nijhawan, R. (2008). Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31(2), 179–198.PubMed Nijhawan, R. (2008). Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31(2), 179–198.PubMed
go back to reference Oram, M., & Perrett, D. (1996). Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 76(1), 109–129.PubMed Oram, M., & Perrett, D. (1996). Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 76(1), 109–129.PubMed
go back to reference Parkinson, J., Springer, A., & Prinz, W. (2012). Before, during and after you disappear: effects of timing and dynamic updating of the real-time action simulation of human motions. Psychological Research. doi:10.1007/s00426-012-0422-3. Parkinson, J., Springer, A., & Prinz, W. (2012). Before, during and after you disappear: effects of timing and dynamic updating of the real-time action simulation of human motions. Psychological Research. doi:10.​1007/​s00426-012-0422-3.
go back to reference Pozzo, T., Papaxanthis, C., Petit, J., Schweighofer, N., & Stucchi, N. (2006). Kinematic features of movement tunes perception and action coupling. Behavioural Brain Research, 169(1), 75–82.PubMedCrossRef Pozzo, T., Papaxanthis, C., Petit, J., Schweighofer, N., & Stucchi, N. (2006). Kinematic features of movement tunes perception and action coupling. Behavioural Brain Research, 169(1), 75–82.PubMedCrossRef
go back to reference Press, C., Cook, J., Blakemore, S. J., & Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31(8), 2792–2800.PubMedCrossRef Press, C., Cook, J., Blakemore, S. J., & Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31(8), 2792–2800.PubMedCrossRef
go back to reference Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.CrossRef Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.CrossRef
go back to reference Prinz, W., & Rapinett, G. (2008). Filling the gap: dynamic representation of occluded action. In F. Morganti, C. A. & G. Riva (Eds.), Enacting intersubjectivity: A cognitive and social perspective on the study of interactions (pp. 223-236). Amsterdam: IOS Press. Prinz, W., & Rapinett, G. (2008). Filling the gap: dynamic representation of occluded action. In F. Morganti, C. A. & G. Riva (Eds.), Enacting intersubjectivity: A cognitive and social perspective on the study of interactions (pp. 223-236). Amsterdam: IOS Press.
go back to reference Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Reviews in Neuroscience, 27, 169–192.CrossRef Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Reviews in Neuroscience, 27, 169–192.CrossRef
go back to reference Sarkheil, P., Vuong, Q., Bulthoff, H., & Noppeney, U. (2008). The integration of higher order form and motion by the human brain. Neuroimage, 42(4), 1529–1536. Sarkheil, P., Vuong, Q., Bulthoff, H., & Noppeney, U. (2008). The integration of higher order form and motion by the human brain. Neuroimage, 42(4), 1529–1536.
go back to reference Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. (2011). The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience,. doi:10.1093/scan/nsr025.PubMed Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. (2011). The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience,. doi:10.​1093/​scan/​nsr025.PubMed
go back to reference Schippers, M. B., & Keysers, C. (2011). Mapping the flow of information within the putative mirror neuron system during gesture observation. Neuroimage, 57(1), 37–44.PubMedCrossRef Schippers, M. B., & Keysers, C. (2011). Mapping the flow of information within the putative mirror neuron system during gesture observation. Neuroimage, 57(1), 37–44.PubMedCrossRef
go back to reference Shiffrar, M., & Pinto, J. (2002). The visual analysis of bodily motion. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action. Oxford: Oxford University Press. Shiffrar, M., & Pinto, J. (2002). The visual analysis of bodily motion. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action. Oxford: Oxford University Press.
go back to reference Sparenberg, P., Springer, A., & Prinz, W. (2011). Predicting others’ actions: evidence for a constant time delay in action simulation. Psychological Research, 76(1), 41–49.PubMedCrossRef Sparenberg, P., Springer, A., & Prinz, W. (2011). Predicting others’ actions: evidence for a constant time delay in action simulation. Psychological Research, 76(1), 41–49.PubMedCrossRef
go back to reference Springer, A., & Prinz, W. (2010). Action semantics modulate action prediction. Quarterly Journal of Experimental Psychology, 63(11), 2141–2158.CrossRef Springer, A., & Prinz, W. (2010). Action semantics modulate action prediction. Quarterly Journal of Experimental Psychology, 63(11), 2141–2158.CrossRef
go back to reference Stadler, W., Schubotz, R., von Cramon, D., Springer, A., Graf, M., & Prinz, W. (2011). Predicting and memorizing observed action: differential premotor cortex involvement. Human Brain Mapping, 32(5), 677–687.PubMedCrossRef Stadler, W., Schubotz, R., von Cramon, D., Springer, A., Graf, M., & Prinz, W. (2011). Predicting and memorizing observed action: differential premotor cortex involvement. Human Brain Mapping, 32(5), 677–687.PubMedCrossRef
go back to reference Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing? A neurophysiological study. Neuron, 31(1), 155–165.PubMedCrossRef Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing? A neurophysiological study. Neuron, 31(1), 155–165.PubMedCrossRef
go back to reference Viviani, P., Baud-Bovy, G., & Redolfi, M. (1997). Perceiving and tracking kinesthetic stimuli: further evidence of motor-perceptual interactions. Journal of Experimental Psychology—Human Perception and Performance, 23(4), 1232–1252.PubMedCrossRef Viviani, P., Baud-Bovy, G., & Redolfi, M. (1997). Perceiving and tracking kinesthetic stimuli: further evidence of motor-perceptual interactions. Journal of Experimental Psychology—Human Perception and Performance, 23(4), 1232–1252.PubMedCrossRef
go back to reference Viviani, P., & Flash, T. (1995). Minimum-Jerk, 2/3-power law, and isochrony—converging approaches to movement planning. Journal of Experimental Psychology—Human Perception and Performance, 21(1), 32–53.PubMedCrossRef Viviani, P., & Flash, T. (1995). Minimum-Jerk, 2/3-power law, and isochrony—converging approaches to movement planning. Journal of Experimental Psychology—Human Perception and Performance, 21(1), 32–53.PubMedCrossRef
go back to reference Viviani, P., & Stucchi, N. (1992). Biological movements look uniform: evidence of motor-perceptual interactions. Journal of Experimental Psychology—Human Perception and Performance, 18(3), 603–623.PubMedCrossRef Viviani, P., & Stucchi, N. (1992). Biological movements look uniform: evidence of motor-perceptual interactions. Journal of Experimental Psychology—Human Perception and Performance, 18(3), 603–623.PubMedCrossRef
go back to reference Watanabe, K. (2008). Behavioral speed contagion: automatic modulation of movement timing by observation of body movements. Cognition, 106(3), 1514–1524.PubMedCrossRef Watanabe, K. (2008). Behavioral speed contagion: automatic modulation of movement timing by observation of body movements. Cognition, 106(3), 1514–1524.PubMedCrossRef
go back to reference Wolpert, D., & Flanagan, J. (2001). Motor prediction. Current Biology, 20(11), R729–R732.CrossRef Wolpert, D., & Flanagan, J. (2001). Motor prediction. Current Biology, 20(11), R729–R732.CrossRef
Metagegevens
Titel
Movement kinematics affect action prediction: comparing human to non-human point-light actions
Auteurs
Waltraud Stadler
Anne Springer
Jim Parkinson
Wolfgang Prinz
Publicatiedatum
01-07-2012
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2012
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-012-0431-2

Andere artikelen Uitgave 4/2012

Psychological Research 4/2012 Naar de uitgave