Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2012

01-07-2012 | Review

How does visuomotor priming differ for biological and non-biological stimuli? A review of the evidence

Auteurs: E. Gowen, E. Poliakoff

Gepubliceerd in: Psychological Research | Uitgave 4/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Visuomotor priming occurs when our actions are influenced by observing a compatible or incompatible action. Here we ask whether visuomotor priming is specific to human, biological actions or generalises to non-biological movements, such as abstract shapes or robots. Reviewing the evidence indicates that priming occurs for both types of stimuli and emphasises the contributions of both bottom-up (e.g. stimulus saliency, appearance, kinematics) and top-down (e.g. attention and prior knowledge) factors. We propose a model suggesting that although bottom-up features play a critical role, the degree of difference in priming for biological versus non-biological stimuli can be ultimately shaped by top-down factors.
Voetnoten
1
We did, however, observe an effect of view on the size of compatibility effects in a condition which required people to attend closely to the movement of the finger or block and report odd-ball movements. This manipulation also removed the difference between biological and non-biological stimuli.
 
2
Here we have suggested that the movement of a single dot with or without biological kinematics are processed similarly but this requires further clarification.
 
Literatuur
go back to reference Aicken, M. D., Wilson, A. D., Williams, J. H., & Mon-Williams, M. (2007). Methodological issues in measures of imitative reaction times. Brain and Cognition, 63, 304–308.PubMedCrossRef Aicken, M. D., Wilson, A. D., Williams, J. H., & Mon-Williams, M. (2007). Methodological issues in measures of imitative reaction times. Brain and Cognition, 63, 304–308.PubMedCrossRef
go back to reference Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Review Neuroscience, 7, 268–277.CrossRef Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Review Neuroscience, 7, 268–277.CrossRef
go back to reference Bertenthal, B. I., Longo, M. R., & Kosobud, A. (2006). Imitative response tendencies following observation of intransitive actions. Journal of Experimental Psychology: Human Perception and Performance, 32, 210–225.PubMedCrossRef Bertenthal, B. I., Longo, M. R., & Kosobud, A. (2006). Imitative response tendencies following observation of intransitive actions. Journal of Experimental Psychology: Human Perception and Performance, 32, 210–225.PubMedCrossRef
go back to reference Bien, N., Roebroeck, A., Goebel, R., & Sack, A. T. (2009). The brain’s intention to imitate: the neurobiology of intentional versus automatic imitation. Cerebral Cortex, 19, 2338–2351.PubMedCrossRef Bien, N., Roebroeck, A., Goebel, R., & Sack, A. T. (2009). The brain’s intention to imitate: the neurobiology of intentional versus automatic imitation. Cerebral Cortex, 19, 2338–2351.PubMedCrossRef
go back to reference Biermann-Ruben, K., Jonas, M., Kessler, K., Siebner, H. R., Baumer, T., Schnitzler, A., et al. (2008). Observing repetitive finger movements modulates response times of auditorily cued finger movements. Brain and Cognition, 68, 107–113.PubMedCrossRef Biermann-Ruben, K., Jonas, M., Kessler, K., Siebner, H. R., Baumer, T., Schnitzler, A., et al. (2008). Observing repetitive finger movements modulates response times of auditorily cued finger movements. Brain and Cognition, 68, 107–113.PubMedCrossRef
go back to reference Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267.PubMedCrossRef Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267.PubMedCrossRef
go back to reference Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human-parietal systems, and the amygdala, in the perception of biological motion. The Journal of Neuroscience, 16, 3737–3744.PubMed Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human-parietal systems, and the amygdala, in the perception of biological motion. The Journal of Neuroscience, 16, 3737–3744.PubMed
go back to reference Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or non-biological motion on movement execution. Journal of Sports Science, 25, 519–530.CrossRef Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or non-biological motion on movement execution. Journal of Sports Science, 25, 519–530.CrossRef
go back to reference Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychology (Amst), 106, 3–22.CrossRef Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychology (Amst), 106, 3–22.CrossRef
go back to reference Brass, M., Bekkering, H., Wohlschlager, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44, 124–143.PubMedCrossRef Brass, M., Bekkering, H., Wohlschlager, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44, 124–143.PubMedCrossRef
go back to reference Brass, M., Derrfuss, J., & von Cramon, D. Y. (2005). The inhibition of imitative and overlearned responses: a functional double dissociation. Neuropsychologia, 43, 89–98.PubMedCrossRef Brass, M., Derrfuss, J., & von Cramon, D. Y. (2005). The inhibition of imitative and overlearned responses: a functional double dissociation. Neuropsychologia, 43, 89–98.PubMedCrossRef
go back to reference Brass, M., & Heyes, C. (2005). Imitation: is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Science, 9(10), 489–495.CrossRef Brass, M., & Heyes, C. (2005). Imitation: is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Science, 9(10), 489–495.CrossRef
go back to reference Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: inferential processes versus action simulation. Current Biology, 17, 2117–2121.PubMedCrossRef Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: inferential processes versus action simulation. Current Biology, 17, 2117–2121.PubMedCrossRef
go back to reference Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13, 400–404.PubMed Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13, 400–404.PubMed
go back to reference Carter, E. J., Hodgins, J. K., & Rakison, D. H. (2011). Exploring the neural correlates of goal-directed action and intention understanding. Neuroimage, 54, 1634–1642.PubMedCrossRef Carter, E. J., Hodgins, J. K., & Rakison, D. H. (2011). Exploring the neural correlates of goal-directed action and intention understanding. Neuroimage, 54, 1634–1642.PubMedCrossRef
go back to reference Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T., & Giese, M. A. (2010). Neuronal encoding of human kinematic invariants during action observation. Cerebral Cortex, 20, 1647–1655.PubMedCrossRef Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T., & Giese, M. A. (2010). Neuronal encoding of human kinematic invariants during action observation. Cerebral Cortex, 20, 1647–1655.PubMedCrossRef
go back to reference Castelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage, 12, 314–325.PubMedCrossRef Castelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage, 12, 314–325.PubMedCrossRef
go back to reference Catmur, C., & Heyes, C. (2011). Time course analyses confirm independence of imitative and spatial compatibility. Journal of Experimental Psychology: Human Perception and Performance, 37, 409–421.PubMedCrossRef Catmur, C., & Heyes, C. (2011). Time course analyses confirm independence of imitative and spatial compatibility. Journal of Experimental Psychology: Human Perception and Performance, 37, 409–421.PubMedCrossRef
go back to reference Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: The role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society London B: Biology Science, 364, 2369–2380.CrossRef Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: The role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society London B: Biology Science, 364, 2369–2380.CrossRef
go back to reference Chaminade, T., & Cheng, G. (2009). Social cognitive neuroscience and humanoid robotics. Journal of Physiology-Paris, 103(3–5), 286–295.CrossRef Chaminade, T., & Cheng, G. (2009). Social cognitive neuroscience and humanoid robotics. Journal of Physiology-Paris, 103(3–5), 286–295.CrossRef
go back to reference Chaminade, T., Franklin, D., Oztop, E., and Cheng, G. (2005). Motor interference between humans and humanoid robots: effect of biological and artificial motion. In Proceedings of the 4th International Conference on Development and Learning*, Osaka, Japan. Chaminade, T., Franklin, D., Oztop, E., and Cheng, G. (2005). Motor interference between humans and humanoid robots: effect of biological and artificial motion. In Proceedings of the 4th International Conference on Development and Learning*, Osaka, Japan.
go back to reference Cho, Y. S., & Proctor, R. W. (2003). Stimulus and response representations underlying orthogonal stimulus-response compatibility effects. Psychonomic Bulletin and Review, 10, 45–73.PubMedCrossRef Cho, Y. S., & Proctor, R. W. (2003). Stimulus and response representations underlying orthogonal stimulus-response compatibility effects. Psychonomic Bulletin and Review, 10, 45–73.PubMedCrossRef
go back to reference Chong, T. T., Cunnington, R., Williams, M. A., & Mattingley, J. B. (2009). The role of selective attention in matching observed and executed actions. Neuropsychologia, 47, 786–795.PubMedCrossRef Chong, T. T., Cunnington, R., Williams, M. A., & Mattingley, J. B. (2009). The role of selective attention in matching observed and executed actions. Neuropsychologia, 47, 786–795.PubMedCrossRef
go back to reference Chong, T. T., Williams, M. A., Cunnington, R., & Mattingley, J. B. (2008). Selective attention modulates inferior frontal gyrus activity during action observation. Neuroimage, 40, 298–307.PubMedCrossRef Chong, T. T., Williams, M. A., Cunnington, R., & Mattingley, J. B. (2008). Selective attention modulates inferior frontal gyrus activity during action observation. Neuroimage, 40, 298–307.PubMedCrossRef
go back to reference Cook, J., & Bird, G. (2011). Social attitudes differentially modulate imitation in adolescents and adults. Experimental Brain Research, 211, 601–612.CrossRef Cook, J., & Bird, G. (2011). Social attitudes differentially modulate imitation in adolescents and adults. Experimental Brain Research, 211, 601–612.CrossRef
go back to reference Cook, R., Press, C., Dickinson, A., & Heyes, C. (2010). Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance, 36, 840–852.PubMedCrossRef Cook, R., Press, C., Dickinson, A., & Heyes, C. (2010). Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance, 36, 840–852.PubMedCrossRef
go back to reference Cross, E. S., Hamilton, A. F., Kraemer, D. J., Kelley, W. M., & Grafton, S. T. (2009). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30, 1383–1392.PubMedCrossRef Cross, E. S., Hamilton, A. F., Kraemer, D. J., Kelley, W. M., & Grafton, S. T. (2009). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30, 1383–1392.PubMedCrossRef
go back to reference Csibra, G. (2007). Action mirroring and action understanding: An alternative account. In P. Haggard, Y. Rosetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition. Attention and performance XXII (pp. 435–459). Oxford: Oxford University Press. Csibra, G. (2007). Action mirroring and action understanding: An alternative account. In P. Haggard, Y. Rosetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition. Attention and performance XXII (pp. 435–459). Oxford: Oxford University Press.
go back to reference Engel, A., Burke, M., Fiehler, K., Bien, S., & Rosler, F. (2008). How moving objects become animated: the human mirror neuron system assimilates non-biological movement patterns. The Society for Neuroscience, 3, 368–387.CrossRef Engel, A., Burke, M., Fiehler, K., Bien, S., & Rosler, F. (2008). How moving objects become animated: the human mirror neuron system assimilates non-biological movement patterns. The Society for Neuroscience, 3, 368–387.CrossRef
go back to reference Ferrari, P. F., Bonini, L., & Fogassi, L. (2009). From monkey mirror neurons to primate behaviours: possible ‘direct’ and ‘indirect’ pathways. Philosophical Transactions of the Royal Society London B: Biology Science, 364, 2311–2323.CrossRef Ferrari, P. F., Bonini, L., & Fogassi, L. (2009). From monkey mirror neurons to primate behaviours: possible ‘direct’ and ‘indirect’ pathways. Philosophical Transactions of the Royal Society London B: Biology Science, 364, 2311–2323.CrossRef
go back to reference Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of ‘theory of mind’. Trends in Cognitive Science, 7, 77–83.CrossRef Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of ‘theory of mind’. Trends in Cognitive Science, 7, 77–83.CrossRef
go back to reference Gallagher, H. L., Happe, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia, 38, 11–21.PubMedCrossRef Gallagher, H. L., Happe, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia, 38, 11–21.PubMedCrossRef
go back to reference Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage, 35, 1674–1684.PubMedCrossRef Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage, 35, 1674–1684.PubMedCrossRef
go back to reference Gowen, E., Bradshaw, C., Galpin, A., Lawrence, A., & Poliakoff, E. (2010). Exploring visuomotor priming following biological and non-biological stimuli. Brain and Cognition, 74, 288–297.PubMedCrossRef Gowen, E., Bradshaw, C., Galpin, A., Lawrence, A., & Poliakoff, E. (2010). Exploring visuomotor priming following biological and non-biological stimuli. Brain and Cognition, 74, 288–297.PubMedCrossRef
go back to reference Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103–111.CrossRef Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103–111.CrossRef
go back to reference Grezes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage, 18, 928–937.PubMedCrossRef Grezes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage, 18, 928–937.PubMedCrossRef
go back to reference Grossman, E. D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45, 2847–2853.PubMedCrossRef Grossman, E. D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45, 2847–2853.PubMedCrossRef
go back to reference Hamilton, A. F. (2008). Emulation and mimicry for social interaction: a theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61(1), 101–115.CrossRef Hamilton, A. F. (2008). Emulation and mimicry for social interaction: a theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61(1), 101–115.CrossRef
go back to reference Heyes, C. (2001). Causes and consequences of imitation. Trends in Cognitive Science, 5, 253–261.CrossRef Heyes, C. (2001). Causes and consequences of imitation. Trends in Cognitive Science, 5, 253–261.CrossRef
go back to reference Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575–583.PubMedCrossRef Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575–583.PubMedCrossRef
go back to reference Hogan, N. (1984). An organizing principle for a class of voluntary movements. Journal of Neuroscience, 4, 2745–2754.PubMed Hogan, N. (1984). An organizing principle for a class of voluntary movements. Journal of Neuroscience, 4, 2745–2754.PubMed
go back to reference Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526.PubMedCrossRef Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526.PubMedCrossRef
go back to reference Jansson, E., Wilson, A. D., Williams, J. H., & Mon-Williams, M. (2007). Methodological problems undermine tests of the ideo-motor conjecture. Experimental Brain Research, 182, 549–558.CrossRef Jansson, E., Wilson, A. D., Williams, J. H., & Mon-Williams, M. (2007). Methodological problems undermine tests of the ideo-motor conjecture. Experimental Brain Research, 182, 549–558.CrossRef
go back to reference Jenkins, A. C., Macrae, C. N., & Mitchell, J. P. (2008). Repetition suppression of ventromedial prefrontal activity during judgments of self and others. Proceedings of the National Academy of Sciences of United States of America, 105, 4507–4512.CrossRef Jenkins, A. C., Macrae, C. N., & Mitchell, J. P. (2008). Repetition suppression of ventromedial prefrontal activity during judgments of self and others. Proceedings of the National Academy of Sciences of United States of America, 105, 4507–4512.CrossRef
go back to reference Kilner, J. M., & Frith, C. D. (2008). Action observation: Inferring intentions without mirror neurons. Current Biology, 18, R32–R33.PubMedCrossRef Kilner, J. M., & Frith, C. D. (2008). Action observation: Inferring intentions without mirror neurons. Current Biology, 18, R32–R33.PubMedCrossRef
go back to reference Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.PubMedCrossRef Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.PubMedCrossRef
go back to reference Kilner, J., Hamilton, A. F., & Blakemore, S. J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. The Society for Neuroscience, 2, 158–166.CrossRef Kilner, J., Hamilton, A. F., & Blakemore, S. J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. The Society for Neuroscience, 2, 158–166.CrossRef
go back to reference Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525.PubMedCrossRef Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525.PubMedCrossRef
go back to reference Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychological Review, 97, 253–270.PubMedCrossRef Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychological Review, 97, 253–270.PubMedCrossRef
go back to reference Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., & Kircher, T. (2008). Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLoS ONE, 3(7), e2597.PubMedCrossRef Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., & Kircher, T. (2008). Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLoS ONE, 3(7), e2597.PubMedCrossRef
go back to reference Leighton, J., Bird, G., Orsini, C., & Heyes, C. M. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46, 905–910.CrossRef Leighton, J., Bird, G., Orsini, C., & Heyes, C. M. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46, 905–910.CrossRef
go back to reference Leighton, J., & Heyes, C. (2010). Hand to mouth: Automatic imitation across effector systems. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1174–1183.PubMedCrossRef Leighton, J., & Heyes, C. (2010). Hand to mouth: Automatic imitation across effector systems. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1174–1183.PubMedCrossRef
go back to reference Liepelt, R., & Brass, M. (2010). Top-down modulation of motor priming by belief about animacy. Experimental Psychology, 57, 221–227.PubMedCrossRef Liepelt, R., & Brass, M. (2010). Top-down modulation of motor priming by belief about animacy. Experimental Psychology, 57, 221–227.PubMedCrossRef
go back to reference Liepelt, R., Prinz, W., & Brass, M. (2010). When do we simulate non-human agents? Dissociating communicative and non-communicative actions. Cognition, 115, 426–434.PubMedCrossRef Liepelt, R., Prinz, W., & Brass, M. (2010). When do we simulate non-human agents? Dissociating communicative and non-communicative actions. Cognition, 115, 426–434.PubMedCrossRef
go back to reference Longo, M. R., & Bertenthal, B. I. (2009). Attention modulates the specificity of automatic imitation to human actors. Experimental Brain Research, 192, 739–744.CrossRef Longo, M. R., & Bertenthal, B. I. (2009). Attention modulates the specificity of automatic imitation to human actors. Experimental Brain Research, 192, 739–744.CrossRef
go back to reference Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34, 489–501.PubMedCrossRef Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34, 489–501.PubMedCrossRef
go back to reference Marsh, L. E., & Hamilton, A. F. (2011). Dissociation of mirroring and mentalising systems in autism. Neuroimage, 56, 1511–1519.PubMedCrossRef Marsh, L. E., & Hamilton, A. F. (2011). Dissociation of mirroring and mentalising systems in autism. Neuroimage, 56, 1511–1519.PubMedCrossRef
go back to reference Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005a). General and specific contributions of the medial prefrontal cortex to knowledge about mental states. Neuroimage, 28, 757–762.PubMedCrossRef Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005a). General and specific contributions of the medial prefrontal cortex to knowledge about mental states. Neuroimage, 28, 757–762.PubMedCrossRef
go back to reference Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005b). The link between social cognition and self-referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience, 17, 1306–1315.PubMedCrossRef Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005b). The link between social cognition and self-referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience, 17, 1306–1315.PubMedCrossRef
go back to reference Mitchell, J. P., Heatherton, T. F., & Macrae, C. N. (2002). Distinct neural systems subserve person and object knowledge. Proceedings of the National Academy of Sciences of United States of America, 99, 15238–15243.CrossRef Mitchell, J. P., Heatherton, T. F., & Macrae, C. N. (2002). Distinct neural systems subserve person and object knowledge. Proceedings of the National Academy of Sciences of United States of America, 99, 15238–15243.CrossRef
go back to reference Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50, 655–663.PubMedCrossRef Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50, 655–663.PubMedCrossRef
go back to reference Molnar-Szakacs, I., Iacoboni, M., Koski, L., & Mazziotta, J. C. (2005). Functional segregation within pars opercularis of the inferior frontal gyrus: evidence from fMRI studies of imitation and action observation. Cerebral Cortex, 15, 986–994.PubMedCrossRef Molnar-Szakacs, I., Iacoboni, M., Koski, L., & Mazziotta, J. C. (2005). Functional segregation within pars opercularis of the inferior frontal gyrus: evidence from fMRI studies of imitation and action observation. Cerebral Cortex, 15, 986–994.PubMedCrossRef
go back to reference Mori, M. (1970). The uncanny valley. Energy, 7, 33–35. (in Japanese). Mori, M. (1970). The uncanny valley. Energy, 7, 33–35. (in Japanese).
go back to reference Muthukumaraswamy, S. D., & Singh, K. D. (2008). Modulation of the human mirror neuron system during cognitive activity. Psychophysiology, 45, 896–905.PubMedCrossRef Muthukumaraswamy, S. D., & Singh, K. D. (2008). Modulation of the human mirror neuron system during cognitive activity. Psychophysiology, 45, 896–905.PubMedCrossRef
go back to reference Oberman, L. M., McCleery, J. P., Ramachandran, V. S., & Pineda, J. A. (2007). EEG evidence for mirror neuron activity during the observation of human and robot actions: toward an analysis of the human qualities of interactive robots. Neurocomputing, 70, 2194–2203.CrossRef Oberman, L. M., McCleery, J. P., Ramachandran, V. S., & Pineda, J. A. (2007). EEG evidence for mirror neuron activity during the observation of human and robot actions: toward an analysis of the human qualities of interactive robots. Neurocomputing, 70, 2194–2203.CrossRef
go back to reference Oztop, E., Frankline, D. W., Chaminade, T., & Cheng, G. (2005). Human–humanoid interaction: is a humanoid robot perceived as a human? International Journal of Humanoid Robotics, 2, 537–559.CrossRef Oztop, E., Frankline, D. W., Chaminade, T., & Cheng, G. (2005). Human–humanoid interaction: is a humanoid robot perceived as a human? International Journal of Humanoid Robotics, 2, 537–559.CrossRef
go back to reference Poliakoff, E., Galpin, A., Dick, J., Moore, P., & Tipper, S. P. (2007). The effect of viewing graspable objects and actions in Parkinson’s disease. Neuroreport, 18, 483–487.PubMedCrossRef Poliakoff, E., Galpin, A., Dick, J., Moore, P., & Tipper, S. P. (2007). The effect of viewing graspable objects and actions in Parkinson’s disease. Neuroreport, 18, 483–487.PubMedCrossRef
go back to reference Press, C. (2011). Action observation and robotic agents: learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35(6), 1410–1418.PubMedCrossRef Press, C. (2011). Action observation and robotic agents: learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35(6), 1410–1418.PubMedCrossRef
go back to reference Press, C., Bird, G., Flach, R., & Heyes, C. (2005). Robotic movement elicits automatic imitation. Brain Research Cognitive Brain Research, 25, 632–640.PubMedCrossRef Press, C., Bird, G., Flach, R., & Heyes, C. (2005). Robotic movement elicits automatic imitation. Brain Research Cognitive Brain Research, 25, 632–640.PubMedCrossRef
go back to reference Press, C., Gherri, E., Heyes, C., & Eimer, M. (2010). Action preparation helps and hinders the perception of action. Journal of Cognitive Neuroscience, 22(10), 2198–2211.PubMedCrossRef Press, C., Gherri, E., Heyes, C., & Eimer, M. (2010). Action preparation helps and hinders the perception of action. Journal of Cognitive Neuroscience, 22(10), 2198–2211.PubMedCrossRef
go back to reference Press, C., Gillmeister, H., & Heyes, C. (2006). Bottom-up, not top-down, modulation of imitation by human and robotic models. European Journal of Neuroscience, 24(8), 2415–2419.PubMedCrossRef Press, C., Gillmeister, H., & Heyes, C. (2006). Bottom-up, not top-down, modulation of imitation by human and robotic models. European Journal of Neuroscience, 24(8), 2415–2419.PubMedCrossRef
go back to reference Press, C., Gillmeister, H., & Heyes, C. (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proceedings: Biological Science, 274(1652), 2509–2514.CrossRef Press, C., Gillmeister, H., & Heyes, C. (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proceedings: Biological Science, 274(1652), 2509–2514.CrossRef
go back to reference Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.PubMedCrossRef Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.PubMedCrossRef
go back to reference Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRef Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRef
go back to reference Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (2002). From mirror neurons to imitation: facts and speculations. In A. N. Meltzoff & W. Prinz (Eds.), The imitative mind. Cambridge, UK: Cambridge University Press. Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (2002). From mirror neurons to imitation: facts and speculations. In A. N. Meltzoff & W. Prinz (Eds.), The imitative mind. Cambridge, UK: Cambridge University Press.
go back to reference Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research Cognitive Brain Research, 3, 131–141.PubMedCrossRef Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research Cognitive Brain Research, 3, 131–141.PubMedCrossRef
go back to reference Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., Frith, C (2011) The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience (in press). Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., Frith, C (2011) The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience (in press).
go back to reference Spengler, S., von Cramon, D. Y., & Brass, M. (2009). Control of shared representations relies on key processes involved in mental state attribution. Human Brain Mapping, 30, 3704–3718.PubMedCrossRef Spengler, S., von Cramon, D. Y., & Brass, M. (2009). Control of shared representations relies on key processes involved in mental state attribution. Human Brain Mapping, 30, 3704–3718.PubMedCrossRef
go back to reference Spengler, S., von Cramon, D. Y., & Brass, M. (2010). Resisting motor mimicry: control of imitation involves processes central to social cognition in patients with frontal and temporo-parietal lesions. The Society for Neuroscience, 5, 401–416.CrossRef Spengler, S., von Cramon, D. Y., & Brass, M. (2010). Resisting motor mimicry: control of imitation involves processes central to social cognition in patients with frontal and temporo-parietal lesions. The Society for Neuroscience, 5, 401–416.CrossRef
go back to reference Stanley, J., Gowen, E., & Miall, R. C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33, 915–926.PubMedCrossRef Stanley, J., Gowen, E., & Miall, R. C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33, 915–926.PubMedCrossRef
go back to reference Stanley, J., Gowen, E., & Miall, R. C. (2010). How instructions modify perception: an fMRI study investigating brain areas involved in attributing human agency. Neuroimage, 52, 389–400.PubMedCrossRef Stanley, J., Gowen, E., & Miall, R. C. (2010). How instructions modify perception: an fMRI study investigating brain areas involved in attributing human agency. Neuroimage, 52, 389–400.PubMedCrossRef
go back to reference Steckenfinger, S. A., & Ghazanfar, A. A. (2009). Monkey visual behavior falls into the uncanny valley. Proceedings of the National Academy of Sciences of United States of America, 106, 18362–18366.CrossRef Steckenfinger, S. A., & Ghazanfar, A. A. (2009). Monkey visual behavior falls into the uncanny valley. Proceedings of the National Academy of Sciences of United States of America, 106, 18362–18366.CrossRef
go back to reference Stel, M., van Baaren, R. B., Blascovich, J., van, D. E., McCall, C., Pollmann, M. M., van Leeuwen, M. L., Mastop, J. & Vonk, R. (2010) Effects of a priori liking on the elicitation of mimicry. Experimental Psychology 57, 412–418 Stel, M., van Baaren, R. B., Blascovich, J., van, D. E., McCall, C., Pollmann, M. M., van Leeuwen, M. L., Mastop, J. & Vonk, R. (2010) Effects of a priori liking on the elicitation of mimicry. Experimental Psychology 57, 412–418
go back to reference Sturmer, B., Aschersleben, G., & Prinz, W. (2000). Correspondence effects with manual gestures and postures: a study of imitation. Journal of Experimental Psychology: Human Perception and Performance, 26, 1746–1759.PubMedCrossRef Sturmer, B., Aschersleben, G., & Prinz, W. (2000). Correspondence effects with manual gestures and postures: a study of imitation. Journal of Experimental Psychology: Human Perception and Performance, 26, 1746–1759.PubMedCrossRef
go back to reference Teufel, C., Fletcher, P. C., & Davis, G. (2010). Seeing other minds: attributed mental states influence perception. Trends in Cognitive Science, 14, 376–382.CrossRef Teufel, C., Fletcher, P. C., & Davis, G. (2010). Seeing other minds: attributed mental states influence perception. Trends in Cognitive Science, 14, 376–382.CrossRef
go back to reference Tsai, C. C., & Brass, M. (2007). Does the human motor system simulate Pinocchio’s actions? Coacting with a human hand versus a wooden hand in a dyadic interaction. Psychological Science, 18, 1058–1062.PubMedCrossRef Tsai, C. C., & Brass, M. (2007). Does the human motor system simulate Pinocchio’s actions? Coacting with a human hand versus a wooden hand in a dyadic interaction. Psychological Science, 18, 1058–1062.PubMedCrossRef
go back to reference Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J. P. (2007). The self and social cognition: the role of cortical midline structures and mirror neurons. Trends in Cognitive Science, 11, 153–157.CrossRef Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J. P. (2007). The self and social cognition: the role of cortical midline structures and mirror neurons. Trends in Cognitive Science, 11, 153–157.CrossRef
go back to reference van Baaren, R., Janssen, L., Chartrand, T. L., & Dijksterhuis, A. (2009). Where is the love? The social aspects of mimicry. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2381–2389.CrossRef van Baaren, R., Janssen, L., Chartrand, T. L., & Dijksterhuis, A. (2009). Where is the love? The social aspects of mimicry. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2381–2389.CrossRef
go back to reference Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage, 48, 564–584.PubMedCrossRef Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage, 48, 564–584.PubMedCrossRef
go back to reference van Schie, H. T., Koelewijn, T., Jensen, O., Oostenveld, R., Maris, E., & Bekkering, H. (2008). Evidence for fast, low-level motor resonance to action observation: an MEG study. The Society for Neuroscience, 3, 213–228.CrossRef van Schie, H. T., Koelewijn, T., Jensen, O., Oostenveld, R., Maris, E., & Bekkering, H. (2008). Evidence for fast, low-level motor resonance to action observation: an MEG study. The Society for Neuroscience, 3, 213–228.CrossRef
go back to reference Vogt, S., Taylor, P., & Hopkins, B. (2003). Visuomotor priming by pictures of hand postures: perspective matters. Neuropsychologia, 41, 941–951.PubMedCrossRef Vogt, S., Taylor, P., & Hopkins, B. (2003). Visuomotor priming by pictures of hand postures: perspective matters. Neuropsychologia, 41, 941–951.PubMedCrossRef
go back to reference Vu, K. P., & Proctor, R. W. (2004). Mixing compatible and incompatible mappings: elimination, reduction, and enhancement of spatial compatibility effects. Quarterly Journal of Experimental Psychology A, 57, 539–556.CrossRef Vu, K. P., & Proctor, R. W. (2004). Mixing compatible and incompatible mappings: elimination, reduction, and enhancement of spatial compatibility effects. Quarterly Journal of Experimental Psychology A, 57, 539–556.CrossRef
Metagegevens
Titel
How does visuomotor priming differ for biological and non-biological stimuli? A review of the evidence
Auteurs
E. Gowen
E. Poliakoff
Publicatiedatum
01-07-2012
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2012
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-011-0389-5

Andere artikelen Uitgave 4/2012

Psychological Research 4/2012 Naar de uitgave