Skip to main content

Advertisement

Log in

Neural mechanisms and models underlying joint action

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the sts region. Trends Cogn Sci 4:267–278

    Article  PubMed  Google Scholar 

  • Bonaiuto J, Rosta E, Arbib MA (2007) Extending the mirror neuron system model, I Audible actions and invisible grasps. Biol Cybern 96:9–38

    Article  PubMed  Google Scholar 

  • Bonini L, Rozzi S, Ugolotti F, Simone L, Ferrari PF, Fogassi L (2010) Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cereb Cortex 20:1372–1385

    Article  PubMed  Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fmri study. Eur J Neurosci 13:400–404

    PubMed  CAS  Google Scholar 

  • Chalmeau R (1994) Do chimpanzees cooperate in a learning task? Primates 35:385–392

    Article  Google Scholar 

  • Chersi F, Fogassi L, Rozzi S, Rizzolatti G, Ferrari P (2005) Neuronal chains for actions in the parietal lobe: a computational model. Soc Neurosci Abs 4128

  • Chersi F, Mukovskiy A, Fogassi L, Ferrari PF, Erlhagen W (2006) A model of intention understanding based on learned chains of motor acts in the parietal lobe. Comput Neurosci 69:48

    Google Scholar 

  • Chersi F, Thill S, Ziemke T, Borghi AM (2010) Sentence processing: linking language to motor chains. Front Neurorob 4:1–12

    Google Scholar 

  • Craighero L, Metta G, Sandini G, Fadiga L (2007) The mirror-neurons system: data and models. Prog Brain Res 164:39–59

    Article  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. Computational and mathematical modelling of neural systems. MIT Press, Cambridge

    Google Scholar 

  • Demiris Y, Hayes G (2002) Imitation as a dual-route process featuring predictive and learning components: a biologically-plausible computational model. MIT Press, Cambridge

    Google Scholar 

  • Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    PubMed  CAS  Google Scholar 

  • Fagg AH, Arbib MA (1998) Modeling parietal-premotor interactions in primate control of grasping. Neural Netw 11:1277–1303

    Article  PubMed  Google Scholar 

  • Fogassi L, Bonini L, Simone L, Ugolotti F, Ruggeri E, Rozzi S, Chersi F, Rizzolatti G, Ferrari PF (2007) Time course of neuronal activity reflecting the final goal of observed and executed action sequences in monkey parietal and premotor cortex. Soc Neurosci Abs 636:6

    Google Scholar 

  • Fogassi L, Ferrari P, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005a) Parietal lobe: from action organization to intention understanding. Science 308:662–667

    Article  PubMed  CAS  Google Scholar 

  • Fogassi L, Ferrari P, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005b) Supporting material for: Parietal lobe: from action organization to intention understanding. Science 308. http://www.sciencemag.org/content/308/5722/662/suppl/DC1

  • Frith CD, Frith U (1999) Interacting minds—a biological basis. Science 286(5445):1692–1695

    Article  PubMed  CAS  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (2002) Action representation and the inferior parietal lobule. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance. Oxford University Press, Oxford. pp 334–355

    Google Scholar 

  • Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trend Cogn Sci 8:396–403

    Article  Google Scholar 

  • Gentilucci M, Rizzolatti G (1990) Cortical motor control of arm and hand movements. In: Goodale MA (eds) Vision and action: the control of grasping. Ablex, Norwood. pp 147–162

    Google Scholar 

  • Grinnel J, Packer C, Pusey AE (1995) Cooperation in male lions: kinship, reciprocity, or mutualism? Animal Behav 49:95–105

    Article  Google Scholar 

  • Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12:711–720

    Article  PubMed  CAS  Google Scholar 

  • Haruno M, Wolpert DM, Kawato M (2001) Mosaic model for sensorimotor learning and control. Neural Comput 13:2201–2220

    Article  PubMed  CAS  Google Scholar 

  • Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 45:507–540

    Article  Google Scholar 

  • Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC, Mazziotta JC, Rizzolatti G (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98(24):13995–13999

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3(3):79

    Article  Google Scholar 

  • Luppino G, Rizzolatti G (2000) The organization of the frontal motor cortex. News Physiol Sci 15:219–224

    PubMed  Google Scholar 

  • Melis AP, Hare B, Tomasello M (2006) Chimpanzees recruit the best collaborators. Science 311:1297–1300

    Article  PubMed  CAS  Google Scholar 

  • Nishitani N, Hari R (2000) Temporal dynamics of cortical representation for action. Proc Natl Acad Sci USA 97(2):913–918

    Article  PubMed  CAS  Google Scholar 

  • Noe R (2006) Cooperation experiments: coordination through communication versus acting apart together. Animal Behav 71:1–18

    Article  Google Scholar 

  • Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (stpa) neurons to biological motion stimuli. J Cogn Neurosci 6:99–116

    Article  Google Scholar 

  • Oztop E, Arbib MA (2002) Schema design and implementation of the grasp-related mirror neuron system. Biol Cybern 87(2):116–140

    Article  PubMed  Google Scholar 

  • Oztop E, Wolpert DM, Kawato MM (2005) Mental state inference using visual control parameters. Cogn Brain Res 22(2):129–151

    Article  Google Scholar 

  • Perrett D, Harries M, Bevan R, Thomas S, Benson P, Mistlin A, Chitty A, Hietanen J, Ortega J (1989) Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 146:87–113

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror neuron system. Annual Rev Neurosci 27:169–192

    Article  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MFS, Behrens TEJ, Johansen-Berg H (2006) Connection patterns distinguish three regions of human parietal cortex. Cereb Cortex 16:1418–1430

    Article  PubMed  CAS  Google Scholar 

  • Sebanz N, Bekkering H, Knoblich G (2006) Joint action: bodies and minds moving together. Trend Cogn Sci 10(2):70–76

    Article  Google Scholar 

  • Sebanz N, Knoblich G (2009) Prediction in joint action: What, when, and where. Top Cogn Sci 1:353–367

    Article  Google Scholar 

  • Thach WT (1975) Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res 88:233–241

    Article  PubMed  CAS  Google Scholar 

  • Visalberghi E, Quarantotti BP, Tranchida F (2000) Solving a cooperation task without taking into account the partner’s behavior: the case of capuchin monkeys (cebus apella). J Comp Psychol 114:297–301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A particular thank goes to Leonardo Fogassi and Pier Francesco Ferrari who gave me the opportunity to work in their laboratory at the University of Parma. This work was partially supported by the European project Artesimit, EC Grant IST-2000-29689.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Chersi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chersi, F. Neural mechanisms and models underlying joint action. Exp Brain Res 211, 643–653 (2011). https://doi.org/10.1007/s00221-011-2690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2690-3

Keywords

Navigation