Skip to main content
Top
Gepubliceerd in: Psychological Research 8/2021

06-01-2021 | Original Article

Hazardous tools: the emergence of reasoning in human tool use

Auteurs: Giovanni Federico, François Osiurak, Maria A. Brandimonte

Gepubliceerd in: Psychological Research | Uitgave 8/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Humans are unique in the way they understand the causal relationships between the use of tools and achieving a goal. The idea at the core of the present research is that tool use can be considered as an instance of problem-solving situations supported by technical reasoning. In an eye-tracking study, we investigated the fixation patterns of participants (N = 32) looking at 3D images of thematically consistent (e.g., nail–steel hammer) and thematically inconsistent (e.g., scarf–steel hammer) object-tool pairs that could be either “hazardous” (accidentally electrified) or not. Results showed that under thematically consistent conditions, participants focused on the tool’s manipulation area (e.g., the handle of a steel hammer). However, when electrified tools were present or when the visual scene was not action-prompting, regardless of the presence of electricity, the tools’ functional/identity areas (e.g., the head of a steel hammer) were fixated longer than the tools’ manipulation areas. These results support an integrated and reasoning-based approach to human tool use and document, for the first time, the crucial role of mechanical/semantic knowledge in tool visual exploration.
Voetnoten
1
For the majority of the manipulation-based theorists, when we see a tool, we automatically activate two kinds of motor representations: How to grasp it (i.e., “structural affordances”) and How to use it (i.e., “functional affordances”; Buxbaum & Kalénine, 2010; Thill et al., 2013; Bach, Nicholson, & Hudson, 2014; Kourtis & Vingerhoets, 2015; Kourtis, Vandemaele, & Vingerhoets, 2018). By positing the automatic activation of motor representations associated with the tool’s usual function (i.e., How to use it), the so-called automatic activation hypothesis of functional affordances becomes a crucial aspect of many embodied approaches to human tool use (e.g., Bach et al., 2014; Buxbaum, 2001; Gonzalez Rothi, Ochipa, & Heilma, 1991; van Elk, van Schie, & Bekkering, 2014). Please note that the terms “gesture engram” (Buxbaum, 2001), “visuokinesthetic motor engram” (Heilman, Gonzalez Rothi, & Valenstein, 1982), “spatial–temporal movement representation” (Heilman & Watson, 2008), “manipulation knowledge” (Bach et al., 2014; van Elk et al., 2014) or “representation of motor programs for acquired tool use skills” (Johnson-Frey, Newman-Norlund, & Grafto, 2005), as well as many others, are generally used as synonyms of functional affordances. Thus, while it differs from the initial conceptualisation made by Gibson (1977) and despite its polysemic nature, the concept of functional affordance remains univocally meaningful.
 
2
With the term “mechanical knowledge” (within this paper, synonym of “technical reasoning”) we considered a form of knowledge about physical principles. Such a non-declarative kind of knowledge may be considered as abstract because physical and technical realities do not overlap. Hence, a single physical matter (e.g., glass) can have distinct properties (e.g., hardness, sharpness, transparency). Conversely, distinct physical matters (e.g., metal or plastic) can have the same single property (e.g., hardness). Additionally, as happens in by-analogy problem solving situations, we are able to quickly transfer the mechanical principles we learned through a specific tool or in a specific circumstance to another (e.g., a knife may be used to screw by transferring the function usually associated with a screwdriver to the knife). Crucially, one of the peculiarities of human tool use lies exactly in transfer skills (e.g., Penn, Holyoak, & Povinelli, 2008). Further discussions on these aspects may be found in Osiurak and Badets (2016).
 
3
Given the background of the study, one might wonder why we preferred to study oculomotor behaviour rather than actual tool manipulation behaviour (e.g., motor preparation of grasps or other typical affordance-related experimental tasks). Alongside the relevant eye-hand coordination issues we introduced above, here it may be useful to remind that the basic assumption of the direct-visual-route-to-action view is that vision guides action (Milner & Goodale, 2008). In particular, it has been repeatedly suggested in the literature how the “implicit recognition of action-related object attributes [affordances] can bias object competition—and visual spatial attention” so that “the motor affordance of an object must first be recognized, a process that likely involves attention to specific object features” (Handy, Grafton, Shroff, Ketay, & Gazzaniga, 2003, p. 424–425). Therefore, the temporal allocation of visuo-spatial attention reflects visually guided behaviour. If an affordance associated with a tool is perceived, the fixation pattern of the tool will be mostly focused on its action-relevant parts (Handy et al., 2003; Land, 2006; Roberts & Humphreys, 2011; Natraj, Pella, Borghi, & Wheaton, 2015; Ambrosini & Costantini, 2017). Consistently with that, the temporal allocation of visuo-spatial attention to specific areas of tools (e.g., the handle of a hammer) can be effectively used as an indirect index of affordance perception (see Federico & Brandimonte, 2019 for a detailed discussion).
 
Literatuur
go back to reference Ambrosini, E., & Costantini, M. (2017). Body posture differentially impacts on visual attention towards tool, graspable, and non-graspable objects. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 360.PubMed Ambrosini, E., & Costantini, M. (2017). Body posture differentially impacts on visual attention towards tool, graspable, and non-graspable objects. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 360.PubMed
go back to reference Baber, C. (2003). Cognition and tool use: Forms of engagement in human and animal use of tools. London: Taylor & Francis.CrossRef Baber, C. (2003). Cognition and tool use: Forms of engagement in human and animal use of tools. London: Taylor & Francis.CrossRef
go back to reference Bach, P., Nicholson, T., & Hudson, M. (2014). The affordance-matching hypothesis: How objects guide action understanding and prediction. Frontiers in Human Neuroscience, 8, 254.PubMedPubMedCentralCrossRef Bach, P., Nicholson, T., & Hudson, M. (2014). The affordance-matching hypothesis: How objects guide action understanding and prediction. Frontiers in Human Neuroscience, 8, 254.PubMedPubMedCentralCrossRef
go back to reference Bakheit, A. M. O., Brennan, A., Gan, P., Green, H., & Roberts, S. (2013). Anarchic hand syndrome following resection of a frontal lobe tumor. Neurocase, 19(1), 36–40.PubMedCrossRef Bakheit, A. M. O., Brennan, A., Gan, P., Green, H., & Roberts, S. (2013). Anarchic hand syndrome following resection of a frontal lobe tumor. Neurocase, 19(1), 36–40.PubMedCrossRef
go back to reference Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., et al. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Science USA, 103, 449–454.CrossRef Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., et al. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Science USA, 103, 449–454.CrossRef
go back to reference Beck, S. R., Apperly, I. A., Chappell, J., Guthrie, C., & Cutting, N. (2011). Making tools isn’t child’s play. Cognition, 119(2), 301–306.PubMedCrossRef Beck, S. R., Apperly, I. A., Chappell, J., Guthrie, C., & Cutting, N. (2011). Making tools isn’t child’s play. Cognition, 119(2), 301–306.PubMedCrossRef
go back to reference Boronat, C. B., Buxbaum, L. J., Coslett, H. B., Tang, K., Saffran, E. M., Kimberg, D. Y., & Detre, J. A. (2005). Distinctions between manipulation and function knowledge of objects: Evidence from functional magnetic resonance imaging. Cognitive Brain Research, 23(2–3), 361–373.PubMedCrossRef Boronat, C. B., Buxbaum, L. J., Coslett, H. B., Tang, K., Saffran, E. M., Kimberg, D. Y., & Detre, J. A. (2005). Distinctions between manipulation and function knowledge of objects: Evidence from functional magnetic resonance imaging. Cognitive Brain Research, 23(2–3), 361–373.PubMedCrossRef
go back to reference Bortoletto, M., & Cunnington, R. (2010). Motor timing and motor sequencing contribute differently to the preparation for voluntary movement. Neuroimage, 49(4), 3338–3348.PubMedCrossRef Bortoletto, M., & Cunnington, R. (2010). Motor timing and motor sequencing contribute differently to the preparation for voluntary movement. Neuroimage, 49(4), 3338–3348.PubMedCrossRef
go back to reference Buxbaum, L. J., & Kalénine, S. (2010). Action knowledge, visuomotor activation, and embodiment in the two action systems. Annals of the New York Academy of Sciences, 1191, 201.PubMedPubMedCentralCrossRef Buxbaum, L. J., & Kalénine, S. (2010). Action knowledge, visuomotor activation, and embodiment in the two action systems. Annals of the New York Academy of Sciences, 1191, 201.PubMedPubMedCentralCrossRef
go back to reference Canessa, N., Borgo, F., Cappa, S. F., Perani, D., Falini, A., Buccino, G., et al. (2008). The different neural correlates of action and functional knowledge in semantic memory: An FMRI study. Cerebral Cortex, 18(4), 740–751.PubMedCrossRef Canessa, N., Borgo, F., Cappa, S. F., Perani, D., Falini, A., Buccino, G., et al. (2008). The different neural correlates of action and functional knowledge in semantic memory: An FMRI study. Cerebral Cortex, 18(4), 740–751.PubMedCrossRef
go back to reference Caspers, S., Eickhoff, S. B., Geyer, S., Scheperjans, F., Mohlberg, H., Zilles, K., & Amunts, K. (2008). The human inferior parietal lobule in stereotaxic space. Brain Structure and Function, 212(6), 481–495.PubMedCrossRef Caspers, S., Eickhoff, S. B., Geyer, S., Scheperjans, F., Mohlberg, H., Zilles, K., & Amunts, K. (2008). The human inferior parietal lobule in stereotaxic space. Brain Structure and Function, 212(6), 481–495.PubMedCrossRef
go back to reference Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability. Neuroimage, 33(2), 430–448.PubMedCrossRef Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability. Neuroimage, 33(2), 430–448.PubMedCrossRef
go back to reference Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12(4), 478–484.PubMedCrossRef Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12(4), 478–484.PubMedCrossRef
go back to reference Chen, Q., Garcea, F. E., Jacobs, R. A., & Mahon, B. Z. (2018). Abstract representations of object-directed action in the left inferior parietal lobule. Cerebral Cortex, 28(6), 2162–2174.PubMedCrossRef Chen, Q., Garcea, F. E., Jacobs, R. A., & Mahon, B. Z. (2018). Abstract representations of object-directed action in the left inferior parietal lobule. Cerebral Cortex, 28(6), 2162–2174.PubMedCrossRef
go back to reference Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage, 14(5), 1136–1149.PubMedCrossRef Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage, 14(5), 1136–1149.PubMedCrossRef
go back to reference Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1585–1599.CrossRef Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1585–1599.CrossRef
go back to reference Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.PubMedCrossRef Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.PubMedCrossRef
go back to reference Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.CrossRef Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.CrossRef
go back to reference Decroix, J., & Kalénine, S. (2018). Timing of grip and goal activation during action perception: A priming study. Experimental Brain Research, 236, 2411–2426.PubMedCrossRef Decroix, J., & Kalénine, S. (2018). Timing of grip and goal activation during action perception: A priming study. Experimental Brain Research, 236, 2411–2426.PubMedCrossRef
go back to reference Decroix, J., & Kalénine, S. (2019). What first drives visual attention during the recognition of object-directed actions? The role of kinematics and goal information. Attention Perception and Psychophysics, 81, 2400–2409.CrossRef Decroix, J., & Kalénine, S. (2019). What first drives visual attention during the recognition of object-directed actions? The role of kinematics and goal information. Attention Perception and Psychophysics, 81, 2400–2409.CrossRef
go back to reference Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.CrossRefPubMed Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.CrossRefPubMed
go back to reference Federico, G., & Brandimonte, M. A. (2019). Tool and object affordances: An ecological eye-tracking study. Brain and Cognition, 135, 103582.PubMedCrossRef Federico, G., & Brandimonte, M. A. (2019). Tool and object affordances: An ecological eye-tracking study. Brain and Cognition, 135, 103582.PubMedCrossRef
go back to reference Federico, G., & Brandimonte, M. A. (2020). Looking to recognise: the pre-eminence of semantic over sensorimotor processing in human tool use. Scientific Reports, 10(1), 1–16.CrossRef Federico, G., & Brandimonte, M. A. (2020). Looking to recognise: the pre-eminence of semantic over sensorimotor processing in human tool use. Scientific Reports, 10(1), 1–16.CrossRef
go back to reference Gallagher, S. (2017). Enactivist interventions: Rethinking the mind. Oxford: Oxford University Press.CrossRef Gallagher, S. (2017). Enactivist interventions: Rethinking the mind. Oxford: Oxford University Press.CrossRef
go back to reference Garcea, F. E., & Mahon, B. Z. (2012). What is in a tool concept? Dissociating manipulation knowledge from function knowledge. Memory and Cognition, 40(8), 1303–1313.PubMedCrossRef Garcea, F. E., & Mahon, B. Z. (2012). What is in a tool concept? Dissociating manipulation knowledge from function knowledge. Memory and Cognition, 40(8), 1303–1313.PubMedCrossRef
go back to reference Gibson, J. J. (1977). The theory of affordances. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale: Lawrence Erlbaum Associates Inc. Gibson, J. J. (1977). The theory of affordances. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale: Lawrence Erlbaum Associates Inc.
go back to reference Goldenberg, G. (2013). Apraxia: The cognitive side of motor control. Oxford: Oxford University Press.CrossRef Goldenberg, G. (2013). Apraxia: The cognitive side of motor control. Oxford: Oxford University Press.CrossRef
go back to reference Gonzalez Rothi, L. J., Ochipa, C., & Heilman, K. M. (1991). A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology, 8(6), 443–458.CrossRef Gonzalez Rothi, L. J., Ochipa, C., & Heilman, K. M. (1991). A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology, 8(6), 443–458.CrossRef
go back to reference Handy, T. C., Grafton, S. T., Shroff, N. M., Ketay, S., & Gazzaniga, M. S. (2003). Graspable objects grab attention when the potential for action is recognized. Nature Neuroscience, 6(4), 421–427.PubMedCrossRef Handy, T. C., Grafton, S. T., Shroff, N. M., Ketay, S., & Gazzaniga, M. S. (2003). Graspable objects grab attention when the potential for action is recognized. Nature Neuroscience, 6(4), 421–427.PubMedCrossRef
go back to reference Heilman, K. M., Gonzalez Rothi, L. J., & Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 32(4), 342–342.PubMedCrossRef Heilman, K. M., Gonzalez Rothi, L. J., & Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 32(4), 342–342.PubMedCrossRef
go back to reference Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78.PubMedCrossRef Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78.PubMedCrossRef
go back to reference Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15(6), 681–695.PubMedCrossRef Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15(6), 681–695.PubMedCrossRef
go back to reference Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235.PubMedCrossRef Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235.PubMedCrossRef
go back to reference Kourtis, D., & Vingerhoets, G. (2015). Perceiving objects by their function: An EEG study on feature saliency and prehensile affordances. Biological Psychology, 110, 138–147.PubMedCrossRef Kourtis, D., & Vingerhoets, G. (2015). Perceiving objects by their function: An EEG study on feature saliency and prehensile affordances. Biological Psychology, 110, 138–147.PubMedCrossRef
go back to reference Kourtis, D., Vandemaele, P., & Vingerhoets, G. (2018). Concurrent cortical representations of function-and size-related object affordances: An fMRI study. Cognitive Affective and Behavioral Neuroscience, 18(6), 1221–1232.CrossRef Kourtis, D., Vandemaele, P., & Vingerhoets, G. (2018). Concurrent cortical representations of function-and size-related object affordances: An fMRI study. Cognitive Affective and Behavioral Neuroscience, 18(6), 1221–1232.CrossRef
go back to reference Lagarde, J., Valabrègue, R., Corvol, J. C., Le Ber, I., Colliot, O., Vidailhet, M., & Levy, R. (2013). The clinical and anatomical heterogeneity of environmental dependency phenomena. Journal of Neurology, 260(9), 2262–2270.PubMedCrossRef Lagarde, J., Valabrègue, R., Corvol, J. C., Le Ber, I., Colliot, O., Vidailhet, M., & Levy, R. (2013). The clinical and anatomical heterogeneity of environmental dependency phenomena. Journal of Neurology, 260(9), 2262–2270.PubMedCrossRef
go back to reference Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42.CrossRef Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42.CrossRef
go back to reference Land, M. F. (2006). Eye movements and the control of actions in everyday life. Progress in Retinal and Eye Research, 25(3), 296–324.PubMedCrossRef Land, M. F. (2006). Eye movements and the control of actions in everyday life. Progress in Retinal and Eye Research, 25(3), 296–324.PubMedCrossRef
go back to reference Lhermitte, F. (1986). Human autonomy and the frontal lobes. Part II: patient behavior in complex and social situations: the “environmental dependency syndrome.” Annals of Neurology, 19(4), 335–343.PubMedCrossRef Lhermitte, F. (1986). Human autonomy and the frontal lobes. Part II: patient behavior in complex and social situations: the “environmental dependency syndrome.” Annals of Neurology, 19(4), 335–343.PubMedCrossRef
go back to reference Lhermitte, F., Pillon, B., & Serdaru, M. (1986). Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology, 19(4), 326–334.PubMedCrossRef Lhermitte, F., Pillon, B., & Serdaru, M. (1986). Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology, 19(4), 326–334.PubMedCrossRef
go back to reference Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin and Review, 1(4), 476–490.PubMedCrossRef Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin and Review, 1(4), 476–490.PubMedCrossRef
go back to reference Massen, C., & Prinz, W. (2007). Activation of actions rules in action observation. Journal of Experimental Psychology: Learning Memory and Cognition, 33, 1118–1130. Massen, C., & Prinz, W. (2007). Activation of actions rules in action observation. Journal of Experimental Psychology: Learning Memory and Cognition, 33, 1118–1130.
go back to reference Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774–785.PubMedCrossRef Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774–785.PubMedCrossRef
go back to reference Naish, K. R., Reader, A. T., Houston-Price, C., Bremner, A. J., & Holmes, N. P. (2013). To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Experimental Brain Research, 225, 261–275.PubMedCrossRef Naish, K. R., Reader, A. T., Houston-Price, C., Bremner, A. J., & Holmes, N. P. (2013). To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Experimental Brain Research, 225, 261–275.PubMedCrossRef
go back to reference Natraj, N., Pella, Y. M., Borghi, A. M., & Wheaton, L. A. (2015). The visual encoding of tool–object affordances. Neuroscience, 310, 512–527.PubMedCrossRef Natraj, N., Pella, Y. M., Borghi, A. M., & Wheaton, L. A. (2015). The visual encoding of tool–object affordances. Neuroscience, 310, 512–527.PubMedCrossRef
go back to reference Nicholson, T., Roser, M., & Bach, P. (2017). Understanding the goals of everyday instrumental actions is primarily linked to object, not motor-kinematic, information: Evidence from fMRI. PLoS ONE, 12, 1–21.CrossRef Nicholson, T., Roser, M., & Bach, P. (2017). Understanding the goals of everyday instrumental actions is primarily linked to object, not motor-kinematic, information: Evidence from fMRI. PLoS ONE, 12, 1–21.CrossRef
go back to reference Osiurak, F., & Badets, A. (2014). Pliers, not fingers: Tool-action effect in a motor intention paradigm. Cognition, 130(1), 66–73.PubMedCrossRef Osiurak, F., & Badets, A. (2014). Pliers, not fingers: Tool-action effect in a motor intention paradigm. Cognition, 130(1), 66–73.PubMedCrossRef
go back to reference Osiurak, F., & Badets, A. (2016). Tool use and affordance: Manipulation-based versus reasoning-based approaches. Psychological Review, 123, 534–568.PubMedCrossRef Osiurak, F., & Badets, A. (2016). Tool use and affordance: Manipulation-based versus reasoning-based approaches. Psychological Review, 123, 534–568.PubMedCrossRef
go back to reference Osiurak, F., & Reynaud, E. (2019). The elephant in the room: What matters cognitively in cumulative technological culture. Behavioral and Brain Sciences, 43, 1–57. Osiurak, F., & Reynaud, E. (2019). The elephant in the room: What matters cognitively in cumulative technological culture. Behavioral and Brain Sciences, 43, 1–57.
go back to reference Osiurak, F., Lesourd, M., Navarro, J., & Reynaud, E. (2020). Technition: When tools come out of the closet. Perspectives on Psychological Science, 15, 880–897.PubMedCrossRef Osiurak, F., Lesourd, M., Navarro, J., & Reynaud, E. (2020). Technition: When tools come out of the closet. Perspectives on Psychological Science, 15, 880–897.PubMedCrossRef
go back to reference Osiurak, F., Rossetti, Y., & Badets, A. (2017). What is an affordance? 40 years later. Neuroscience and Biobehavioral Reviews, 77, 403–417.PubMedCrossRef Osiurak, F., Rossetti, Y., & Badets, A. (2017). What is an affordance? 40 years later. Neuroscience and Biobehavioral Reviews, 77, 403–417.PubMedCrossRef
go back to reference Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., & Hays, J. (2016). Webgazer: Scalable webcam eye tracking using user interactions. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence-IJCAI 2016. Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., & Hays, J. (2016). Webgazer: Scalable webcam eye tracking using user interactions. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence-IJCAI 2016.
go back to reference Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31(2), 109–130.CrossRefPubMed Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31(2), 109–130.CrossRefPubMed
go back to reference Povinelli, D. J., Reaux, J. E., Theall, L. A., Giambrone, S., & Humphrey, N. (2000). Folk physics for apes: The chimpanzee’s theory of how the world works (Vol. 7). Oxford: Oxford University Press. Povinelli, D. J., Reaux, J. E., Theall, L. A., Giambrone, S., & Humphrey, N. (2000). Folk physics for apes: The chimpanzee’s theory of how the world works (Vol. 7). Oxford: Oxford University Press.
go back to reference Reynaud, E., Lesourd, M., Navarro, J., & Osiurak, F. (2016). On the neurocognitive origins of human tool use: A critical review of neuroimaging data. Neuroscience and Biobehavioral Reviews, 64, 421–437.PubMedCrossRef Reynaud, E., Lesourd, M., Navarro, J., & Osiurak, F. (2016). On the neurocognitive origins of human tool use: A critical review of neuroimaging data. Neuroscience and Biobehavioral Reviews, 64, 421–437.PubMedCrossRef
go back to reference Reynaud, E., Navarro, J., Lesourd, M., & Osiurak, F. (2019). To watch is to work: A review of NeuroImaging data on tool use observation network. Neuropsychology Review, 29, 1–14.CrossRef Reynaud, E., Navarro, J., Lesourd, M., & Osiurak, F. (2019). To watch is to work: A review of NeuroImaging data on tool use observation network. Neuropsychology Review, 29, 1–14.CrossRef
go back to reference Roberts, K. L., & Humphreys, G. W. (2011). Action relations facilitate the identification of briefly-presented objects. Attention Perception and Psychophysics, 73(2), 597–612.CrossRef Roberts, K. L., & Humphreys, G. W. (2011). Action relations facilitate the identification of briefly-presented objects. Attention Perception and Psychophysics, 73(2), 597–612.CrossRef
go back to reference Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge: MIT Press.CrossRef Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge: MIT Press.CrossRef
go back to reference Roux-Sibilon, A., Kalénine, S., Pichat, C., & Peyrin, C. (2018). Dorsal and ventral stream contribution to the paired-object affordance effect. Neuropsychologia, 112, 125–134.PubMedCrossRef Roux-Sibilon, A., Kalénine, S., Pichat, C., & Peyrin, C. (2018). Dorsal and ventral stream contribution to the paired-object affordance effect. Neuropsychologia, 112, 125–134.PubMedCrossRef
go back to reference Stadler, W., Schubotz, R. I., von Cramon, D. Y., Springer, A., Graf, M., & Prinz, W. (2011). Predicting and memorizing observed action: Differential premotor cortex involvement. Human Brain Mapping, 32(5), 677–687.PubMedPubMedCentralCrossRef Stadler, W., Schubotz, R. I., von Cramon, D. Y., Springer, A., Graf, M., & Prinz, W. (2011). Predicting and memorizing observed action: Differential premotor cortex involvement. Human Brain Mapping, 32(5), 677–687.PubMedPubMedCentralCrossRef
go back to reference Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldassarre, G. (2013). Theories and computational models of affordance and mirror systems: An integrative review. Neuroscience and Biobehavioral Reviews, 37(3), 491–521.PubMedCrossRef Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldassarre, G. (2013). Theories and computational models of affordance and mirror systems: An integrative review. Neuroscience and Biobehavioral Reviews, 37(3), 491–521.PubMedCrossRef
go back to reference Vaesen, K. (2012). The cognitive bases of human tool use. Behavioral and Brain Sciences, 35(4), 203–218.CrossRefPubMed Vaesen, K. (2012). The cognitive bases of human tool use. Behavioral and Brain Sciences, 35(4), 203–218.CrossRefPubMed
go back to reference van Elk, M., van Schie, H. T., & Bekkering, H. (2008). Conceptual knowledge for understanding other’s actions is organized primarily around action goals. Experimental Brain Research, 189, 99–107.PubMedPubMedCentralCrossRef van Elk, M., van Schie, H. T., & Bekkering, H. (2008). Conceptual knowledge for understanding other’s actions is organized primarily around action goals. Experimental Brain Research, 189, 99–107.PubMedPubMedCentralCrossRef
go back to reference van Elk, M., van Schie, H., & Bekkering, H. (2014). Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge. Physics of Life Reviews, 11(2), 220–250.PubMedCrossRef van Elk, M., van Schie, H., & Bekkering, H. (2014). Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge. Physics of Life Reviews, 11(2), 220–250.PubMedCrossRef
go back to reference Wurm, M. F., & Caramazza, A. (2019). Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language. Nature Communications, 10(1), 1–10.CrossRef Wurm, M. F., & Caramazza, A. (2019). Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language. Nature Communications, 10(1), 1–10.CrossRef
Metagegevens
Titel
Hazardous tools: the emergence of reasoning in human tool use
Auteurs
Giovanni Federico
François Osiurak
Maria A. Brandimonte
Publicatiedatum
06-01-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 8/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01466-2

Andere artikelen Uitgave 8/2021

Psychological Research 8/2021 Naar de uitgave