Skip to main content
Top
Gepubliceerd in:

04-01-2021 | Original Article

Non-symbolic numerosity encoding escapes spatial frequency equalization

Auteurs: Andrea Adriano, Luisa Girelli, Luca Rinaldi

Gepubliceerd in: Psychological Research | Uitgave 8/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The exact visual mechanisms underpinning the approximate number system are still debated. Recent evidence suggests that numerosity is extracted on segmented visual objects, at least for a moderate numerical range (e.g., < 100 items), whereas alternative models rather propose that numerosity is derived from low-level features (e.g., power spectrum) of an unsegmented image, independently from the range. Here, to disentangle these accounts, we generated stimuli that were equalized for spatial frequency amplitude spectrum and luminance across sets of moderate range numerosities (e.g., 9–15 dots), while independently manipulating the perceived item segmentation by connecting dots with illusory contours (ICs). In Experiment 1, participants performed a numerical discrimination task, in which they had to select the numerically larger between two stimuli: a reference stimulus (always 12 dots) and a test stimulus (from 9 to 15 dots) containing 0, 2 or 4 pairs of dots grouped by ICs lines. In Experiment 2, participants were presented only the test stimulus and performed an estimation task. Results clearly showed that in both experiments participants’ performance followed well-known numerical signatures (e.g., distance effect and scalar variability), with numerosity that was underestimated as the illusory connections increased. Crucially, this was found despite spatial frequencies and luminance were kept constant across all the experimental stimuli and these variables were thus uninformative about numerosity. Taken together, these findings indicate that power spectrum in its own cannot explain numerical processing. Rather, visual segmentation mechanisms may be crucial in such processing at least for a moderate numerosity range.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
Another participant was tested but discarded from the analysis for unreliable performance (i.e., about 50% of trials answered with “0” responses).
 
Literatuur
go back to reference Adriano, A., Rinaldi, L., & Girelli, L. (2021). Visual illusions as a tool to hijack numerical perception: Disentangling non-symbolic number from its continuous visual properties. Journal of Experimental Psychology: Human Perception & Performance. https://doi.org/10.1037/xhp0000844.CrossRef Adriano, A., Rinaldi, L., & Girelli, L. (2021). Visual illusions as a tool to hijack numerical perception: Disentangling non-symbolic number from its continuous visual properties. Journal of Experimental Psychology: Human Perception & Performance. https://​doi.​org/​10.​1037/​xhp0000844.CrossRef
go back to reference Allik, J., & Tuulmets, T. (1991). Occupancy model of perceived numerosity. Perception and Psychophysics, 49(4), 303–314.PubMedCrossRef Allik, J., & Tuulmets, T. (1991). Occupancy model of perceived numerosity. Perception and Psychophysics, 49(4), 303–314.PubMedCrossRef
go back to reference Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245–266.CrossRefPubMed Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245–266.CrossRefPubMed
go back to reference Anobile, G., Cicchini, G. M., & Burr, D. C. (2014). Separate mechanisms for perception of numerosity and density. Psychological Science, 25(1), 265–270.PubMedCrossRef Anobile, G., Cicchini, G. M., & Burr, D. C. (2014). Separate mechanisms for perception of numerosity and density. Psychological Science, 25(1), 265–270.PubMedCrossRef
go back to reference Anobile, G., Cicchini, G. M., & Burr, D. C. (2016). Number as a primary perceptual attribute: A review. Perception, 45(1–2), 5–31.PubMedCrossRef Anobile, G., Cicchini, G. M., & Burr, D. C. (2016). Number as a primary perceptual attribute: A review. Perception, 45(1–2), 5–31.PubMedCrossRef
go back to reference Anobile, G., Cicchini, G. M., Pomè, A., & Burr, D. C. (2017). Connecting visual objects reduces perceived numerosity and density for sparse but not dense patterns. Journal of Numerical Cognition, 3(2), 133–146.CrossRef Anobile, G., Cicchini, G. M., Pomè, A., & Burr, D. C. (2017). Connecting visual objects reduces perceived numerosity and density for sparse but not dense patterns. Journal of Numerical Cognition, 3(2), 133–146.CrossRef
go back to reference Arrighi, R., Togoli, I., & Burr, D. C. (2014). A generalized sense of number. Proceedings of the Royal Society B Biological Sciences, 281(1797), 20141791.PubMedCentralCrossRef Arrighi, R., Togoli, I., & Burr, D. C. (2014). A generalized sense of number. Proceedings of the Royal Society B Biological Sciences, 281(1797), 20141791.PubMedCentralCrossRef
go back to reference Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6), 1131–1136.PubMedCrossRef Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6), 1131–1136.PubMedCrossRef
go back to reference Burr, D., & Ross, J. (2008b). Response: Visual number. Current Biology, 18(18), R857–R858.CrossRef Burr, D., & Ross, J. (2008b). Response: Visual number. Current Biology, 18(18), R857–R858.CrossRef
go back to reference Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences, 103(12), 4693–4698.CrossRef Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences, 103(12), 4693–4698.CrossRef
go back to reference Chakravarthi, R., & Bertamini, M. (2020). Clustering leads to underestimation of numerosity, but crowding is not the cause. Cognition, 198, 104195.PubMedCrossRef Chakravarthi, R., & Bertamini, M. (2020). Clustering leads to underestimation of numerosity, but crowding is not the cause. Cognition, 198, 104195.PubMedCrossRef
go back to reference Cicchini, G. M., Anobile, G., & Burr, D. C. (2016). Spontaneous perception of numerosity in humans. Nature Communications, 7(1), 1–7.CrossRef Cicchini, G. M., Anobile, G., & Burr, D. C. (2016). Spontaneous perception of numerosity in humans. Nature Communications, 7(1), 1–7.CrossRef
go back to reference Dakin, S. C., Tibber, M. S., Greenwood, J. A., & Morgan, M. J. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences, 108(49), 19552–19557.CrossRef Dakin, S. C., Tibber, M. S., Greenwood, J. A., & Morgan, M. J. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences, 108(49), 19552–19557.CrossRef
go back to reference Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390–407.PubMedCrossRef Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390–407.PubMedCrossRef
go back to reference Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.PubMedCrossRef Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.PubMedCrossRef
go back to reference DeWind, N. K. (2019). The number sense is an emergent property of a deep convolutional neural network trained for object recognition. bioRxiv, 609347. DeWind, N. K. (2019). The number sense is an emergent property of a deep convolutional neural network trained for object recognition. bioRxiv, 609347.
go back to reference DeWind, N. K., Bonner, M. F., & Brannon, E. M. (2020). Similarly oriented objects appear more numerous. Journal of Vision, 20(4), 1–11.CrossRef DeWind, N. K., Bonner, M. F., & Brannon, E. M. (2020). Similarly oriented objects appear more numerous. Journal of Vision, 20(4), 1–11.CrossRef
go back to reference DeWind, N. K., Park, J., Woldorff, M. G., & Brannon, E. M. (2019). Numerical encoding in early visual cortex. Cortex, 114, 76–89.PubMedCrossRef DeWind, N. K., Park, J., Woldorff, M. G., & Brannon, E. M. (2019). Numerical encoding in early visual cortex. Cortex, 114, 76–89.PubMedCrossRef
go back to reference Dietrich, J. F., Huber, S., & Nuerk, H. C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS)—a research review. Frontiers in Psychology, 6, 295.PubMedPubMedCentralCrossRef Dietrich, J. F., Huber, S., & Nuerk, H. C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS)—a research review. Frontiers in Psychology, 6, 295.PubMedPubMedCentralCrossRef
go back to reference Dietrich, J. F., Nuerk, H. C., Klein, E., Moeller, K., & Huber, S. (2019). Set size influences the relationship between ANS acuity and math performance: A result of different strategies? Psychological Research Psychologische Forschung, 83(3), 590–612.PubMedCrossRef Dietrich, J. F., Nuerk, H. C., Klein, E., Moeller, K., & Huber, S. (2019). Set size influences the relationship between ANS acuity and math performance: A result of different strategies? Psychological Research Psychologische Forschung, 83(3), 590–612.PubMedCrossRef
go back to reference Durgin, F. H. (2008). Texture density adaptation and visual number revisited. Current Biology, 18(18), R855–R856.PubMedCrossRef Durgin, F. H. (2008). Texture density adaptation and visual number revisited. Current Biology, 18(18), R855–R856.PubMedCrossRef
go back to reference Fornaciai, M., & Park, J. (2018). Early numerosity encoding in visual cortex is not sufficient for the representation of numerical magnitude. Journal of Cognitive Neuroscience, 30(12), 1788–1802.PubMedCrossRef Fornaciai, M., & Park, J. (2018). Early numerosity encoding in visual cortex is not sufficient for the representation of numerical magnitude. Journal of Cognitive Neuroscience, 30(12), 1788–1802.PubMedCrossRef
go back to reference Fornaciai, M., Brannon, E. M., Woldorff, M. G., & Park, J. (2017). Numerosity processing in early visual cortex. NeuroImage, 157, 429–438.PubMedCrossRef Fornaciai, M., Brannon, E. M., Woldorff, M. G., & Park, J. (2017). Numerosity processing in early visual cortex. NeuroImage, 157, 429–438.PubMedCrossRef
go back to reference Franconeri, S. L., Bemis, D. K., & Alvarez, G. A. (2009). Number estimation relies on a set of segmented objects. Cognition, 113(1), 1–13.PubMedCrossRef Franconeri, S. L., Bemis, D. K., & Alvarez, G. A. (2009). Number estimation relies on a set of segmented objects. Cognition, 113(1), 1–13.PubMedCrossRef
go back to reference Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.PubMedCrossRef Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.PubMedCrossRef
go back to reference Gebuis, T., & Reynvoet, B. (2012a). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology General, 141(4), 642–648.PubMedCrossRef Gebuis, T., & Reynvoet, B. (2012a). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology General, 141(4), 642–648.PubMedCrossRef
go back to reference Gebuis, T., & Reynvoet, B. (2012c). Continuous visual properties explain neural responses to nonsymbolic number. Psychophysiology, 49(11), 1649–1659.CrossRef Gebuis, T., & Reynvoet, B. (2012c). Continuous visual properties explain neural responses to nonsymbolic number. Psychophysiology, 49(11), 1649–1659.CrossRef
go back to reference Gebuis, T., Cohen Kadosh, R., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35.PubMedCrossRef Gebuis, T., Cohen Kadosh, R., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35.PubMedCrossRef
go back to reference Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123–1126.PubMedCrossRef Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123–1126.PubMedCrossRef
go back to reference He, L., Zhang, J., Zhou, T., & Chen, L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin and Review, 16(3), 509–517.PubMedCrossRef He, L., Zhang, J., Zhou, T., & Chen, L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin and Review, 16(3), 509–517.PubMedCrossRef
go back to reference He, L., Zhou, K., Zhou, T., He, S., & Chen, L. (2015). Topology-defined units in numerosity perception. Proceedings of the National Academy of Sciences, 112(41), E5647–E5655.CrossRef He, L., Zhou, K., Zhou, T., He, S., & Chen, L. (2015). Topology-defined units in numerosity perception. Proceedings of the National Academy of Sciences, 112(41), E5647–E5655.CrossRef
go back to reference Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599–19604.CrossRef Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599–19604.CrossRef
go back to reference Joubert, O. R., Rousselet, G. A., Fabre-Thorpe, M., & Fize, D. (2009). Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise. Journal of Vision, 9(1), 1–16.PubMedCrossRef Joubert, O. R., Rousselet, G. A., Fabre-Thorpe, M., & Fize, D. (2009). Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise. Journal of Vision, 9(1), 1–16.PubMedCrossRef
go back to reference Katzin, N., Katzin, D., Rosén, A., Henik, A., & Salti, M. (2020). Putting the world in mind: The case of mental representation of quantity. Cognition, 195, 104088.PubMedCrossRef Katzin, N., Katzin, D., Rosén, A., Henik, A., & Salti, M. (2020). Putting the world in mind: The case of mental representation of quantity. Cognition, 195, 104088.PubMedCrossRef
go back to reference Kirjakovski, A., & Matsumoto, E. (2016). Numerosity underestimation in sets with illusory contours. Vision Research, 122, 34–42.PubMedCrossRef Kirjakovski, A., & Matsumoto, E. (2016). Numerosity underestimation in sets with illusory contours. Vision Research, 122, 34–42.PubMedCrossRef
go back to reference Kluth, T., & Zetzsche, C. (2016). Numerosity as a topological invariant. Journal of Vision, 16(3), 1–39.CrossRef Kluth, T., & Zetzsche, C. (2016). Numerosity as a topological invariant. Journal of Vision, 16(3), 1–39.CrossRef
go back to reference Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.CrossRefPubMed Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.CrossRefPubMed
go back to reference Linares, D., & López-Moliner, J. (2016). Quickpsy: An R package to fit psychometric functions for multiple groups. The R Journal, 8(1), 122–131.CrossRef Linares, D., & López-Moliner, J. (2016). Quickpsy: An R package to fit psychometric functions for multiple groups. The R Journal, 8(1), 122–131.CrossRef
go back to reference Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology General, 111(1), 1–22.PubMedCrossRef Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology General, 111(1), 1–22.PubMedCrossRef
go back to reference Morgan, M. J., Raphael, S., Tibber, M. S., & Dakin, S. C. (2014). A texture-processing model of the ‘visual sense of number.’ Proceedings of the Royal Society of London B Biological Sciences, 281(1790), 20141137.CrossRef Morgan, M. J., Raphael, S., Tibber, M. S., & Dakin, S. C. (2014). A texture-processing model of the ‘visual sense of number.’ Proceedings of the Royal Society of London B Biological Sciences, 281(1790), 20141137.CrossRef
go back to reference Nasr, K., Viswanathan, P., & Nieder, A. (2019). Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Science Advances, 5(5), 7903.CrossRef Nasr, K., Viswanathan, P., & Nieder, A. (2019). Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Science Advances, 5(5), 7903.CrossRef
go back to reference Nieder, A. (2002). Seeing more than meets the eye: Processing of illusory contours in animals. Journal of Comparative Physiology A, 188(4), 249–260.CrossRef Nieder, A. (2002). Seeing more than meets the eye: Processing of illusory contours in animals. Journal of Comparative Physiology A, 188(4), 249–260.CrossRef
go back to reference Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences, 101(19), 7457–7462.CrossRef Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences, 101(19), 7457–7462.CrossRef
go back to reference Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin and Review, 1(1), 29–55.PubMedCrossRef Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin and Review, 1(1), 29–55.PubMedCrossRef
go back to reference Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2015). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, 26(2), 748–763.PubMedPubMedCentral Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2015). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, 26(2), 748–763.PubMedPubMedCentral
go back to reference Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.PubMedCrossRef Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.PubMedCrossRef
go back to reference Pomè, A., Anobile, G., Cicchini, G. M., Scabia, A., & Burr, D. C. (2019). Higher attentional costs for numerosity estimation at high densities. Attention, Perception, & Psychophysics, 81(8), 2604–2611.CrossRef Pomè, A., Anobile, G., Cicchini, G. M., Scabia, A., & Burr, D. C. (2019). Higher attentional costs for numerosity estimation at high densities. Attention, Perception, & Psychophysics, 81(8), 2604–2611.CrossRef
go back to reference Railo, H., Karhu, V. M., Mast, J., Pesonen, H., & Koivisto, M. (2016). Rapid and accurate processing of multiple objects in briefly presented scenes. Journal of Vision, 16(3), 1–11.CrossRef Railo, H., Karhu, V. M., Mast, J., Pesonen, H., & Koivisto, M. (2016). Rapid and accurate processing of multiple objects in briefly presented scenes. Journal of Vision, 16(3), 1–11.CrossRef
go back to reference Stoianov, I., & Zorzi, M. (2012). Emergence of a ‘visual number sense’ in hierarchical generative models. Nature Neuroscience, 15(2), 194–196.PubMedCrossRef Stoianov, I., & Zorzi, M. (2012). Emergence of a ‘visual number sense’ in hierarchical generative models. Nature Neuroscience, 15(2), 194–196.PubMedCrossRef
go back to reference Tibber, M. S., Greenwood, J. A., & Dakin, S. C. (2012). Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention. Journal of Vision, 12(6), 1–19.CrossRef Tibber, M. S., Greenwood, J. A., & Dakin, S. C. (2012). Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention. Journal of Vision, 12(6), 1–19.CrossRef
go back to reference Van Rinsveld, A., Guillaume, M., Kohler, P. J., Schiltz, C., Gevers, W., & Content, A. (2020). The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of the National Academy of Sciences, 117(11), 5726–5732.CrossRef Van Rinsveld, A., Guillaume, M., Kohler, P. J., Schiltz, C., Gevers, W., & Content, A. (2020). The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of the National Academy of Sciences, 117(11), 5726–5732.CrossRef
go back to reference Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16(9), 1493–1504.PubMedCrossRef Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16(9), 1493–1504.PubMedCrossRef
go back to reference Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychological Bulletin, 138(6), 1172–1217.PubMedPubMedCentralCrossRef Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychological Bulletin, 138(6), 1172–1217.PubMedPubMedCentralCrossRef
go back to reference Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10(2), 130–137.CrossRef Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10(2), 130–137.CrossRef
go back to reference Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception and Psychophysics, 63(8), 1293–1313.PubMedCrossRef Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception and Psychophysics, 63(8), 1293–1313.PubMedCrossRef
go back to reference Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684.PubMedCrossRef Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684.PubMedCrossRef
Metagegevens
Titel
Non-symbolic numerosity encoding escapes spatial frequency equalization
Auteurs
Andrea Adriano
Luisa Girelli
Luca Rinaldi
Publicatiedatum
04-01-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 8/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01458-2