Skip to main content
Top
Gepubliceerd in:

06-01-2021 | Original Article

Manual dexterity predicts phonological decoding speed in typical reading adults

Auteurs: Sandro Franceschini, Sara Bertoni, Andrea Facoetti

Gepubliceerd in: Psychological Research | Uitgave 8/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Manual dexterity and phonological decoding involve the posterior parietal cortex, which controls location coding for visually guided actions, as well as a large fronto-cerebellar network. We studied the relationship between manual dexterity and reading ability in adult typical readers. Two measurements of manual dexterity were collected to index the procedural learning effect. A linear regression model demonstrated that phonological short-term memory, manual dexterity at time 1 and procedural learning of manual dexterity predicted phonological decoding speed. Similar results were found when left-hand dexterity at time 1 and procedural learning dexterity were entered last. The better one’s phonological decoding skill was, the less fluent their manual dexterity was, suggesting a recycle from object–location to letter–location coding. However, the greater the procedural learning, the faster phonological decoding was, suggesting that larger plasticity of object–location coding was linked to better letter–location coding. An independent role of the interhemispheric connections or of the right posterior parietal cortex is also suggested.
Literatuur
go back to reference Badets, A., Koch, I., & Philipp, A. M. (2016). A review of ideomotor approaches to perception, cognition, action, and language: Advancing a cultural recycling hypothesis. Psychological Research Psychologische Forschung, 80(1), 1–15.PubMedCrossRef Badets, A., Koch, I., & Philipp, A. M. (2016). A review of ideomotor approaches to perception, cognition, action, and language: Advancing a cultural recycling hypothesis. Psychological Research Psychologische Forschung, 80(1), 1–15.PubMedCrossRef
go back to reference Bavelier, D., Corina, D., Jezzard, P., Padmanabhan, S., Clark, V. P., Karni, A., & Turner, R. (1997). Sentence reading: A functional MRI study at 4 Tesla. Journal of Cognitive Neuroscience, 9(5), 664–686.PubMedCrossRef Bavelier, D., Corina, D., Jezzard, P., Padmanabhan, S., Clark, V. P., Karni, A., & Turner, R. (1997). Sentence reading: A functional MRI study at 4 Tesla. Journal of Cognitive Neuroscience, 9(5), 664–686.PubMedCrossRef
go back to reference Bellocchi, S., Tobia, V., & Bonifacci, P. (2017). Predictors of reading and comprehension abilities in bilingual and monolingual children: A longitudinal study on a transparent language. Reading and Writing, 30(6), 1311–1334.CrossRef Bellocchi, S., Tobia, V., & Bonifacci, P. (2017). Predictors of reading and comprehension abilities in bilingual and monolingual children: A longitudinal study on a transparent language. Reading and Writing, 30(6), 1311–1334.CrossRef
go back to reference Bertoni, S., Franceschini, S., Ronconi, L., Gori, S., & Facoetti, A. (2019). Is excessive visual crowding causally linked to developmental dyslexia? Neuropsychologia, 130, 107–117.PubMedCrossRef Bertoni, S., Franceschini, S., Ronconi, L., Gori, S., & Facoetti, A. (2019). Is excessive visual crowding causally linked to developmental dyslexia? Neuropsychologia, 130, 107–117.PubMedCrossRef
go back to reference Brookman, A., McDonald, S., McDonald, D., & Bishop, D. V. (2013). Fine motor deficits in reading disability and language impairment: Same or different? PeerJ, 1, e217.PubMedPubMedCentralCrossRef Brookman, A., McDonald, S., McDonald, D., & Bishop, D. V. (2013). Fine motor deficits in reading disability and language impairment: Same or different? PeerJ, 1, e217.PubMedPubMedCentralCrossRef
go back to reference Carreiras, M., Quiñones, I., Hernández-Cabrera, J. A., & Duñabeitia, J. A. (2015). Orthographic coding: Brain activation for letters, symbols, and digits. Cerebral Cortex, 25(12), 4748–4760.PubMedCrossRef Carreiras, M., Quiñones, I., Hernández-Cabrera, J. A., & Duñabeitia, J. A. (2015). Orthographic coding: Brain activation for letters, symbols, and digits. Cerebral Cortex, 25(12), 4748–4760.PubMedCrossRef
go back to reference Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, 57(6), 750–758.PubMedCrossRef Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, 57(6), 750–758.PubMedCrossRef
go back to reference Cohen, L., Dehaene, S., Vinckier, F., Jobert, A., & Montavont, A. (2008). Reading normal and degraded words: Contribution of the dorsal and ventral visual pathways. NeuroImage, 40(1), 353–366.PubMedCrossRef Cohen, L., Dehaene, S., Vinckier, F., Jobert, A., & Montavont, A. (2008). Reading normal and degraded words: Contribution of the dorsal and ventral visual pathways. NeuroImage, 40(1), 353–366.PubMedCrossRef
go back to reference Culham, J. C., Danckert, S. L., De Souza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153(2), 180–189.PubMedCrossRef Culham, J. C., Danckert, S. L., De Souza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153(2), 180–189.PubMedCrossRef
go back to reference Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. From monkey brain to human brain, 133–157. Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. From monkey brain to human brain, 133–157.
go back to reference Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234–244.PubMedCrossRef Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234–244.PubMedCrossRef
go back to reference Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126.PubMedCrossRef Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126.PubMedCrossRef
go back to reference Dinehart, L., & Manfra, L. (2013). Associations between low-income children’s fine motor skills in preschool and academic performance in second grade. Early Education & Development, 24(2), 138–161.CrossRef Dinehart, L., & Manfra, L. (2013). Associations between low-income children’s fine motor skills in preschool and academic performance in second grade. Early Education & Development, 24(2), 138–161.CrossRef
go back to reference Doyen, A. L., Lambert, E., Dumas, F., & Carlier, M. (2017). Manual performance as predictor of literacy acquisition: A study from kindergarten to grade 1. Cognitive Development, 43, 80–90.CrossRef Doyen, A. L., Lambert, E., Dumas, F., & Carlier, M. (2017). Manual performance as predictor of literacy acquisition: A study from kindergarten to grade 1. Cognitive Development, 43, 80–90.CrossRef
go back to reference Facoetti, A., & Turatto, M. (2000). Asymmetrical visual fields distribution of attention in dyslexic children: A neuropsychological study. Neuroscience Letters, 290(3), 216–218.PubMedCrossRef Facoetti, A., & Turatto, M. (2000). Asymmetrical visual fields distribution of attention in dyslexic children: A neuropsychological study. Neuroscience Letters, 290(3), 216–218.PubMedCrossRef
go back to reference Facoetti, A., Turatto, M., Lorusso, M. L., & Mascetti, G. G. (2001). Orienting of visual attention in dyslexia: Evidence for asymmetric hemispheric control of attention. Experimental Brain Research, 138(1), 46–53.PubMedCrossRef Facoetti, A., Turatto, M., Lorusso, M. L., & Mascetti, G. G. (2001). Orienting of visual attention in dyslexia: Evidence for asymmetric hemispheric control of attention. Experimental Brain Research, 138(1), 46–53.PubMedCrossRef
go back to reference Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M. L., Molteni, M., Paganoni, P., & Mascetti, G. G. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23(6), 841–855.PubMedCrossRef Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M. L., Molteni, M., Paganoni, P., & Mascetti, G. G. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23(6), 841–855.PubMedCrossRef
go back to reference Ferretti, G., Mazzotti, S., & Brizzolara, D. A. N. I. E. L. A. (2008). Visual scanning and reading ability in normal and dyslexic children. Behavioural Neurology, 19. Ferretti, G., Mazzotti, S., & Brizzolara, D. A. N. I. E. L. A. (2008). Visual scanning and reading ability in normal and dyslexic children. Behavioural Neurology, 19.
go back to reference Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814–819.PubMedCrossRef Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814–819.PubMedCrossRef
go back to reference Franceschini, S., Bertoni, S., Gianesini, T., Gori, S., & Facoetti, A. (2017). A different vision of dyslexia: Local precedence on global perception. Scientific Reports, 7(1), 1–10.CrossRef Franceschini, S., Bertoni, S., Gianesini, T., Gori, S., & Facoetti, A. (2017). A different vision of dyslexia: Local precedence on global perception. Scientific Reports, 7(1), 1–10.CrossRef
go back to reference Franceschini, S., Bertoni, S., Ronconi, L., et al. (2016). “Batteria De.Co.Ne. per la lettura” strumenti per la valutazione delle abilità di lettura nelle scuole primarie di primo grado. Dislessia, 13, 319–347. Franceschini, S., Bertoni, S., Ronconi, L., et al. (2016). “Batteria De.Co.Ne. per la lettura” strumenti per la valutazione delle abilità di lettura nelle scuole primarie di primo grado. Dislessia, 13, 319–347.
go back to reference Gabay, Y., Schiff, R., & Vakil, E. (2012). Dissociation between the procedural learning of letter names and motor sequences in developmental dyslexia. Neuropsychologia, 50(10), 2435–2441.PubMedCrossRef Gabay, Y., Schiff, R., & Vakil, E. (2012). Dissociation between the procedural learning of letter names and motor sequences in developmental dyslexia. Neuropsychologia, 50(10), 2435–2441.PubMedCrossRef
go back to reference Gardner, R. A., & Broman, M. (1979). The Purdue Pegboard: Normative data on 1334 school children. Journal of Clinical Child & Adolescent Psychology, 8(3), 156–162.CrossRef Gardner, R. A., & Broman, M. (1979). The Purdue Pegboard: Normative data on 1334 school children. Journal of Clinical Child & Adolescent Psychology, 8(3), 156–162.CrossRef
go back to reference Goodale, M. A. (1993). Visual pathways supporting perception and action in the primate cerebral cortex. Current Opinion in Neurobiology, 3(4), 578–585.PubMedCrossRef Goodale, M. A. (1993). Visual pathways supporting perception and action in the primate cerebral cortex. Current Opinion in Neurobiology, 3(4), 578–585.PubMedCrossRef
go back to reference Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S., & Facoetti, A. (2016). Multiple causal links between magnocellular–dorsal pathway deficit and developmental dyslexia. Cerebral Cortex, 26(11), 4356–4369.PubMedPubMedCentralCrossRef Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S., & Facoetti, A. (2016). Multiple causal links between magnocellular–dorsal pathway deficit and developmental dyslexia. Cerebral Cortex, 26(11), 4356–4369.PubMedPubMedCentralCrossRef
go back to reference Hari, R., Renvall, H., & Tanskanen, T. (2001). Left minineglect in dyslexic adults. Brain, 124(7), 1373–1380.PubMedCrossRef Hari, R., Renvall, H., & Tanskanen, T. (2001). Left minineglect in dyslexic adults. Brain, 124(7), 1373–1380.PubMedCrossRef
go back to reference Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., & Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22(10), 464–471.PubMedCrossRef Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., & Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22(10), 464–471.PubMedCrossRef
go back to reference Judica A and De Luca M (1993) Prova di velocità di lettura brani per la scuola media superiore. hsantalucia.it Judica A and De Luca M (1993) Prova di velocità di lettura brani per la scuola media superiore. hsantalucia.it
go back to reference Kinsbourne, M., Rufo, D. T., Gamzu, E., Palmer, R. L., & Berliner, A. K. (1991). Neuropsychological deficits in adults with dyslexia. Developmental Medicine & Child Neurology, 33(9), 763–775.CrossRef Kinsbourne, M., Rufo, D. T., Gamzu, E., Palmer, R. L., & Berliner, A. K. (1991). Neuropsychological deficits in adults with dyslexia. Developmental Medicine & Child Neurology, 33(9), 763–775.CrossRef
go back to reference Kujala, J., Pammer, K., Cornelissen, P., Roebroeck, A., Formisano, E., & Salmelin, R. (2007). Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cerebral Cortex, 17, 1476–1485.PubMedCrossRef Kujala, J., Pammer, K., Cornelissen, P., Roebroeck, A., Formisano, E., & Salmelin, R. (2007). Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cerebral Cortex, 17, 1476–1485.PubMedCrossRef
go back to reference Leslie, S. C., Davidson, R. J., & Batey, O. B. (1985). Purdue Pegboard performance of disabled and normal readers: Unimanual versus bimanual differences. Brain and Language, 24(2), 359–369.PubMedCrossRef Leslie, S. C., Davidson, R. J., & Batey, O. B. (1985). Purdue Pegboard performance of disabled and normal readers: Unimanual versus bimanual differences. Brain and Language, 24(2), 359–369.PubMedCrossRef
go back to reference Longcamp, M., Zerbato-Poudou, M. T., & Velay, J. L. (2005). The influence of writing practice on letter recognition in preschool children: A comparison between handwriting and typing. Acta Psychologica, 119(1), 67–79.PubMedCrossRef Longcamp, M., Zerbato-Poudou, M. T., & Velay, J. L. (2005). The influence of writing practice on letter recognition in preschool children: A comparison between handwriting and typing. Acta Psychologica, 119(1), 67–79.PubMedCrossRef
go back to reference Macdonald, K., Milne, N., Orr, R., & Pope, R. (2018). Relationships between motor proficiency and academic performance in mathematics and reading in school-aged children and adolescents: A systematic review. International Journal of Environmental Research and Public Health, 15(8), 1603.PubMedCentralCrossRef Macdonald, K., Milne, N., Orr, R., & Pope, R. (2018). Relationships between motor proficiency and academic performance in mathematics and reading in school-aged children and adolescents: A systematic review. International Journal of Environmental Research and Public Health, 15(8), 1603.PubMedCentralCrossRef
go back to reference Manfra, L., Squires, C., Dinehart, L. H., Bleiker, C., Hartman, S. C., & Winsler, A. (2017). Preschool writing and premathematics predict grade 3 achievement for low-income, ethnically diverse children. The Journal of Educational Research, 110(5), 528–537.CrossRef Manfra, L., Squires, C., Dinehart, L. H., Bleiker, C., Hartman, S. C., & Winsler, A. (2017). Preschool writing and premathematics predict grade 3 achievement for low-income, ethnically diverse children. The Journal of Educational Research, 110(5), 528–537.CrossRef
go back to reference Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., & Luxen, A. (2000). Experience-dependent changes in cerebral activation during human REM sleep. Nature Neuroscience, 3(8), 831–836.PubMedCrossRef Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., & Luxen, A. (2000). Experience-dependent changes in cerebral activation during human REM sleep. Nature Neuroscience, 3(8), 831–836.PubMedCrossRef
go back to reference Meng, Z. L., Wydell, T. N., & Bi, H. Y. (2019). Visual-motor integration and reading Chinese in children with/without dyslexia. Reading and Writing, 32(2), 493–510.CrossRef Meng, Z. L., Wydell, T. N., & Bi, H. Y. (2019). Visual-motor integration and reading Chinese in children with/without dyslexia. Reading and Writing, 32(2), 493–510.CrossRef
go back to reference Menghini, D., Hagberg, G. E., Caltagirone, C., Petrosini, L., & Vicari, S. (2006). Implicit learning deficits in dyslexic adults: An fMRI study. NeuroImage, 33(4), 1218–1226.PubMedCrossRef Menghini, D., Hagberg, G. E., Caltagirone, C., Petrosini, L., & Vicari, S. (2006). Implicit learning deficits in dyslexic adults: An fMRI study. NeuroImage, 33(4), 1218–1226.PubMedCrossRef
go back to reference Nicolson, R. I., & Fawcett, A. J. (1994). Comparison of deficits in cognitive and motor skills among children with dyslexia. Annals of Dyslexia, 44(1), 147–164.PubMedCrossRef Nicolson, R. I., & Fawcett, A. J. (1994). Comparison of deficits in cognitive and motor skills among children with dyslexia. Annals of Dyslexia, 44(1), 147–164.PubMedCrossRef
go back to reference Nicolson, R. I., & Fawcett, A. J. (2000). Long-term learning in dyslexic children. European Journal of Cognitive Psychology, 12(3), 357–393.CrossRef Nicolson, R. I., & Fawcett, A. J. (2000). Long-term learning in dyslexic children. European Journal of Cognitive Psychology, 12(3), 357–393.CrossRef
go back to reference Nicolson, R. I., & Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 47(1), 117-127.PubMedCrossRef Nicolson, R. I., & Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 47(1), 117-127.PubMedCrossRef
go back to reference Obeid, R., & Brooks, P. J. (2018). Associations between manual dexterity and language ability in school-age children. Language, Speech, and Hearing Services in Schools, 49(4), 982–994.PubMedCrossRef Obeid, R., & Brooks, P. J. (2018). Associations between manual dexterity and language ability in school-age children. Language, Speech, and Hearing Services in Schools, 49(4), 982–994.PubMedCrossRef
go back to reference Orban, P., Lungu, O., & Doyon, J. (2008). Motor sequence learning and developmental dyslexia. Annals of the New York Academy of Sciences, 1145(1), 151–172.PubMedCrossRef Orban, P., Lungu, O., & Doyon, J. (2008). Motor sequence learning and developmental dyslexia. Annals of the New York Academy of Sciences, 1145(1), 151–172.PubMedCrossRef
go back to reference Pammer, K. (2009). What can MEG neuroimaging tell us about reading? Journal of Neurolinguistics, 22(3), 266–280.CrossRef Pammer, K. (2009). What can MEG neuroimaging tell us about reading? Journal of Neurolinguistics, 22(3), 266–280.CrossRef
go back to reference Pammer, K., Hansen, P., Holliday, I., & Cornelissen, P. (2006). Attentional shifting and the role of the dorsal pathway in visual word recognition. Neuropsychologia, 44(14), 2926–2936.PubMedCrossRef Pammer, K., Hansen, P., Holliday, I., & Cornelissen, P. (2006). Attentional shifting and the role of the dorsal pathway in visual word recognition. Neuropsychologia, 44(14), 2926–2936.PubMedCrossRef
go back to reference Pugh, K. R., Mencl, W. E., Jenner, A. R., Lee, J. R., Katz, L., Frost, S. J., & Shaywitz, B. A. (2001). Neuroimaging studies of reading development and reading disability. Learning Disabilities Research & Practice, 16(4), 240–249.CrossRef Pugh, K. R., Mencl, W. E., Jenner, A. R., Lee, J. R., Katz, L., Frost, S. J., & Shaywitz, B. A. (2001). Neuroimaging studies of reading development and reading disability. Learning Disabilities Research & Practice, 16(4), 240–249.CrossRef
go back to reference Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13(2), 212–218.PubMedCrossRef Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13(2), 212–218.PubMedCrossRef
go back to reference Rodríguez-Aranda, C., & Jakobsen, M. (2011). Differential contribution of cognitive and psychomotor functions to the age-related slowing of speech production. Journal of the International Neuropsychological Society, 17(5), 807–821.PubMedCrossRef Rodríguez-Aranda, C., & Jakobsen, M. (2011). Differential contribution of cognitive and psychomotor functions to the age-related slowing of speech production. Journal of the International Neuropsychological Society, 17(5), 807–821.PubMedCrossRef
go back to reference Röthlisberger, M., Neuenschwander, R., Cimeli, P., & Roebers, C. (2013). Executive functions in 5-to 8-year olds: Developmental changes and relationship to academic achievement. Journal of Educational and Developmental Psychology, 3(2), 153–167.CrossRef Röthlisberger, M., Neuenschwander, R., Cimeli, P., & Roebers, C. (2013). Executive functions in 5-to 8-year olds: Developmental changes and relationship to academic achievement. Journal of Educational and Developmental Psychology, 3(2), 153–167.CrossRef
go back to reference Shmuelof, L., & Zohary, E. (2005). Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron, 47(3), 457–470.PubMedCrossRef Shmuelof, L., & Zohary, E. (2005). Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron, 47(3), 457–470.PubMedCrossRef
go back to reference Snowling, M. J., Lervåg, A., Nash, H. M., & Hulme, C. (2019). Longitudinal relationships between speech perception, phonological skills and reading in children at high-risk of dyslexia. Developmental Science, 22(1), e12723.PubMedCrossRef Snowling, M. J., Lervåg, A., Nash, H. M., & Hulme, C. (2019). Longitudinal relationships between speech perception, phonological skills and reading in children at high-risk of dyslexia. Developmental Science, 22(1), e12723.PubMedCrossRef
go back to reference Stella, G., & Tintoni, C. (2007). Indagine e rilevazione sulle abilità di lettura nelle scuole secondarie di secondo grado. Dislessia, 4, 271–285. Stella, G., & Tintoni, C. (2007). Indagine e rilevazione sulle abilità di lettura nelle scuole secondarie di secondo grado. Dislessia, 4, 271–285.
go back to reference Suggate, S., Pufke, E., & Stoeger, H. (2018). Do fine motor skills contribute to early reading development? Journal of Research in Reading, 41(1), 1–19.CrossRef Suggate, S., Pufke, E., & Stoeger, H. (2018). Do fine motor skills contribute to early reading development? Journal of Research in Reading, 41(1), 1–19.CrossRef
go back to reference Suggate, S., Pufke, E., & Stoeger, H. (2019). Children’s fine motor skills in kindergarten predict reading in grade 1. Early Childhood Research Quarterly, 47, 248–258.CrossRef Suggate, S., Pufke, E., & Stoeger, H. (2019). Children’s fine motor skills in kindergarten predict reading in grade 1. Early Childhood Research Quarterly, 47, 248–258.CrossRef
go back to reference Thomson, J. M., & Goswami, U. (2008). Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. Journal of Physiology-Paris, 102(1–3), 120–129.CrossRefPubMed Thomson, J. M., & Goswami, U. (2008). Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. Journal of Physiology-Paris, 102(1–3), 120–129.CrossRefPubMed
go back to reference Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41(3), 399–433.PubMedCrossRef Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41(3), 399–433.PubMedCrossRef
go back to reference Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research. Brain Research Reviews, 30(1), 66–76.PubMedCrossRef Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research. Brain Research Reviews, 30(1), 66–76.PubMedCrossRef
go back to reference Vidyasagar, T. R., & Pammer, K. (1999). Impaired visual search in dyslexia relates to the role of the magnocellular pathway in attention. NeuroReport, 10(6), 1283–1287.PubMedCrossRef Vidyasagar, T. R., & Pammer, K. (1999). Impaired visual search in dyslexia relates to the role of the magnocellular pathway in attention. NeuroReport, 10(6), 1283–1287.PubMedCrossRef
go back to reference Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14(2), 57–63.PubMedCrossRef Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14(2), 57–63.PubMedCrossRef
Metagegevens
Titel
Manual dexterity predicts phonological decoding speed in typical reading adults
Auteurs
Sandro Franceschini
Sara Bertoni
Andrea Facoetti
Publicatiedatum
06-01-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 8/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01464-4

Andere artikelen Uitgave 8/2021

Psychological Research 8/2021 Naar de uitgave