Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2018

13-05-2017 | Original Article

The visual and haptic contributions to hand perception

Auteurs: Lara A. Coelho, Claudia LR Gonzalez

Gepubliceerd in: Psychological Research | Uitgave 5/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Previous research has found that the perception of our hands is distorted. The characteristics of this distortion are an overestimation of hand width and an underestimation of finger length. The present study examined the role that different sensory modalities (vision and/or haptics) play in the perception of our hands. Participants pointed to their concealed hand in one of three groups: Vision+Haptics, Vision-only, or Haptics-only. Participants in the Vision+Haptics group had vision (non-informative) of the experimental setup and of the pointing hand, but no vision of the hand being estimated. They also experienced haptic feedback as the palm of the hand was in contact with the undersurface of a tabletop, where the estimations were made. Participants in the Vision-only group, instead of placing the hand to be estimated underneath the tabletop, they placed it behind their backs. Participants in this group were asked to imagine as if the hand was under the table when making their estimations. In the Haptics-only group, participants completed the task with the hand underneath the tabletop (as in the Vision+Haptics group) but did so while wearing a blindfold (no vision). All participants estimated the position of ten landmarks on the hand: the fingertip and the metacarpophalangeal joint of each digit. Hand maps were constructed using a 3D motion capture system. Participants in the Haptics-only group produced the most accurate hand maps. We discuss the possibility that vision interferes with somatosensory processing.
Literatuur
go back to reference Azañón, E., Tamè, L., Maravita, A., Linkenauger, S. A., Ferrè, E. R., Tajadura-Jiménez, A., & Longo, M. R. (2016). Multimodal contributions to body representation. Multisensory Research, 29(6–7), 635–661.CrossRef Azañón, E., Tamè, L., Maravita, A., Linkenauger, S. A., Ferrè, E. R., Tajadura-Jiménez, A., & Longo, M. R. (2016). Multimodal contributions to body representation. Multisensory Research, 29(6–7), 635–661.CrossRef
go back to reference Bellan, V., Gilpin, H. R., Stanton, T. R., Newport, R., Gallace, A., & Moseley, G. L. (2015). Untangling visual and proprioceptive contributions to hand localisation over time. Experimental Brain Research, 233(6), 1689–1701.CrossRefPubMed Bellan, V., Gilpin, H. R., Stanton, T. R., Newport, R., Gallace, A., & Moseley, G. L. (2015). Untangling visual and proprioceptive contributions to hand localisation over time. Experimental Brain Research, 233(6), 1689–1701.CrossRefPubMed
go back to reference Bolognini, N., Casanova, D., Maravita, A., & Vallar, G. (2012). Bisecting real and fake body parts: Effects of prism adaptation after right brain damage. Frontiers in Human Neuroscience, 6, 115–127. doi:10.3389/fnhum.2012.00154.CrossRef Bolognini, N., Casanova, D., Maravita, A., & Vallar, G. (2012). Bisecting real and fake body parts: Effects of prism adaptation after right brain damage. Frontiers in Human Neuroscience, 6, 115–127. doi:10.​3389/​fnhum.​2012.​00154.CrossRef
go back to reference Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557.CrossRefPubMed Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557.CrossRefPubMed
go back to reference Butler, A. J., Fink, G. R., Dohle, C., Wunderlich, G., Tellmann, L., Seitz, R. J., & Freund, H. J. (2004). Neural mechanisms underlying reaching for remembered targets cued kinesthetically or visually in left or right hemispace. Human Brain Mapping, 21(3), 165–177. doi:10.1002/hbm.20001.CrossRefPubMed Butler, A. J., Fink, G. R., Dohle, C., Wunderlich, G., Tellmann, L., Seitz, R. J., & Freund, H. J. (2004). Neural mechanisms underlying reaching for remembered targets cued kinesthetically or visually in left or right hemispace. Human Brain Mapping, 21(3), 165–177. doi:10.​1002/​hbm.​20001.CrossRefPubMed
go back to reference Cormier, J.-M., & Tremblay, F. (2013). Asymmetry in corticomotor facilitation revealed in right-handers in the context of haptic discrimination. Laterality: Asymmetries of Body, Brain and Cognition, 18(3), 365–383.CrossRef Cormier, J.-M., & Tremblay, F. (2013). Asymmetry in corticomotor facilitation revealed in right-handers in the context of haptic discrimination. Laterality: Asymmetries of Body, Brain and Cognition, 18(3), 365–383.CrossRef
go back to reference Fontenot, D. J., & Benton, A. L. (1971). Tactile perception of direction in relation to hemispheric locus of lesion. Neuropsychologia, 9(1), 83–88.CrossRefPubMed Fontenot, D. J., & Benton, A. L. (1971). Tactile perception of direction in relation to hemispheric locus of lesion. Neuropsychologia, 9(1), 83–88.CrossRefPubMed
go back to reference Franco, L., & Sperry, R. W. (1977). Hemisphere lateralization for cognitive processing of geometry. Neuropsychologia, 15(1), 107–114.CrossRefPubMed Franco, L., & Sperry, R. W. (1977). Hemisphere lateralization for cognitive processing of geometry. Neuropsychologia, 15(1), 107–114.CrossRefPubMed
go back to reference Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000). The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Experimental Brain Research, 133(2), 156–164.CrossRefPubMed Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000). The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Experimental Brain Research, 133(2), 156–164.CrossRefPubMed
go back to reference Gallagher, S. (2005). Dynamic models of body schematic processes. Advances in Consciousness Research, 62, 233–250.CrossRef Gallagher, S. (2005). Dynamic models of body schematic processes. Advances in Consciousness Research, 62, 233–250.CrossRef
go back to reference Ganea, N., & Longo, M. R. (2017). Projecting the self outside the body: body representations underlying proprioceptive imagery. Cognition, 162, 41–47.CrossRefPubMed Ganea, N., & Longo, M. R. (2017). Projecting the self outside the body: body representations underlying proprioceptive imagery. Cognition, 162, 41–47.CrossRefPubMed
go back to reference Grunwald, M. (2008). Human haptic perception: Basics and applications. Basel, Switzerland: Birkhäuser Verlag.CrossRef Grunwald, M. (2008). Human haptic perception: Basics and applications. Basel, Switzerland: Birkhäuser Verlag.CrossRef
go back to reference Haggard, P., & Wolpert, D. M. (2005). Disorders of body scheme. Paper presented at the In Freund, HJ, Jeannerod, M., Hallett, M., Leiguarda R.,(Eds.), Higher-Order Motor Disorders. Haggard, P., & Wolpert, D. M. (2005). Disorders of body scheme. Paper presented at the In Freund, HJ, Jeannerod, M., Hallett, M., Leiguarda R.,(Eds.), Higher-Order Motor Disorders.
go back to reference Harada, T., Saito, D. N., Kashikura, K.-I., Sato, T., Yonekura, Y., Honda, M., & Sadato, N. (2004). Asymmetrical neural substrates of tactile discrimination in humans: a functional magnetic resonance imaging study. The Journal of Neuroscience, 24(34), 7524–7530.CrossRefPubMed Harada, T., Saito, D. N., Kashikura, K.-I., Sato, T., Yonekura, Y., Honda, M., & Sadato, N. (2004). Asymmetrical neural substrates of tactile discrimination in humans: a functional magnetic resonance imaging study. The Journal of Neuroscience, 24(34), 7524–7530.CrossRefPubMed
go back to reference Hennighausen, K., Enkelmann, D., Wewetzer, C., & Remschmidt, H. (1999). Body image distortion in Anorexia Nervosa—is there really a perceptual deficit? European Child and Adolescent Psychiatry, 8(3), 200–206.CrossRefPubMed Hennighausen, K., Enkelmann, D., Wewetzer, C., & Remschmidt, H. (1999). Body image distortion in Anorexia Nervosa—is there really a perceptual deficit? European Child and Adolescent Psychiatry, 8(3), 200–206.CrossRefPubMed
go back to reference Kumar, S. (1977). Short term memory for a nonverbal tactual task after cerebral commissurotomy. Cortex, 13(1), 55–61.CrossRefPubMed Kumar, S. (1977). Short term memory for a nonverbal tactual task after cerebral commissurotomy. Cortex, 13(1), 55–61.CrossRefPubMed
go back to reference Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: knowledge-driven exploration. Cognitive Psychology, 22(4), 421–459.CrossRefPubMed Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: knowledge-driven exploration. Cognitive Psychology, 22(4), 421–459.CrossRefPubMed
go back to reference Loayza, F., Fernández-Seara, M., Aznárez-Sanado, M., & Pastor, M. A. (2011). Right parietal dominance in spatial egocentric discrimination. Neuroimage, 55(2), 635–643.CrossRefPubMed Loayza, F., Fernández-Seara, M., Aznárez-Sanado, M., & Pastor, M. A. (2011). Right parietal dominance in spatial egocentric discrimination. Neuroimage, 55(2), 635–643.CrossRefPubMed
go back to reference Longo, M. R. (2014). The effects of immediate vision on implicit hand maps. Experimental Brain Research, 232(4), 1241–1247.CrossRefPubMed Longo, M. R. (2014). The effects of immediate vision on implicit hand maps. Experimental Brain Research, 232(4), 1241–1247.CrossRefPubMed
go back to reference Longo, M. R., & Haggard, P. (2011). Weber’s illusion and body shape: anisotropy of tactile size perception on the hand. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 720. doi:10.1037/a0021921.PubMed Longo, M. R., & Haggard, P. (2011). Weber’s illusion and body shape: anisotropy of tactile size perception on the hand. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 720. doi:10.​1037/​a0021921.PubMed
go back to reference Longo, M. R., & Haggard, P. (2012a). A 2.5-D representation of the human hand. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 9. doi:10.1037/a0025428.PubMed Longo, M. R., & Haggard, P. (2012a). A 2.5-D representation of the human hand. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 9. doi:10.​1037/​a0025428.PubMed
go back to reference Oldfield, R.C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMed Oldfield, R.C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMed
go back to reference Paillard, J. (1999). Body Schema and body image—a double dissociation. Motor control, today and tomorrow, 197–214. Paillard, J. (1999). Body Schema and body image—a double dissociation. Motor control, today and tomorrow, 197–214.
go back to reference Riva, G., Gaudio, S., & Dakanalis, A. (2015). The neuropsychology of self-objectification. European Psychologist. 20, 34–43.CrossRef Riva, G., Gaudio, S., & Dakanalis, A. (2015). The neuropsychology of self-objectification. European Psychologist. 20, 34–43.CrossRef
go back to reference Soros, P., Knecht, S., Imai, T., Gurtler, S., Lutkenhoner, B., Ringelstein, E. B., & Henningsen, H. (1999). Cortical asymmetries of the human somatosensory hand representation in right- and left-handers. Neuroscience Letters, 271(2), 89–92. doi:10.1016/S0304-3940(99)00528-5.CrossRefPubMed Soros, P., Knecht, S., Imai, T., Gurtler, S., Lutkenhoner, B., Ringelstein, E. B., & Henningsen, H. (1999). Cortical asymmetries of the human somatosensory hand representation in right- and left-handers. Neuroscience Letters, 271(2), 89–92. doi:10.​1016/​S0304-3940(99)00528-5.CrossRefPubMed
go back to reference Stone, K. D., & Gonzalez, C. L. R. (2014). Grasping with the eyes of your hands: hapsis and vision modulate hand preference. Experimental Brain Research, 232(2), 385–393.CrossRefPubMed Stone, K. D., & Gonzalez, C. L. R. (2014). Grasping with the eyes of your hands: hapsis and vision modulate hand preference. Experimental Brain Research, 232(2), 385–393.CrossRefPubMed
go back to reference Van Beers, R. J., Sittig, A., & van der Gon, J. (1998). The precision of proprioceptive position sense. Experimental Brain Research, 122(4), 367–377.CrossRefPubMed Van Beers, R. J., Sittig, A., & van der Gon, J. (1998). The precision of proprioceptive position sense. Experimental Brain Research, 122(4), 367–377.CrossRefPubMed
go back to reference Van Beers, R. J., Sittig, A. C., & van Der Gon, J. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81(3), 1355–1364.CrossRefPubMed Van Beers, R. J., Sittig, A. C., & van Der Gon, J. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81(3), 1355–1364.CrossRefPubMed
go back to reference Wagman, J. B., Thomas, B. J., McBride, D. M., & Day, B. M. (2013). Perception of maximum reaching height when the means of reaching are no longer in view. Ecological Psychology, 25(1), 63–80.CrossRef Wagman, J. B., Thomas, B. J., McBride, D. M., & Day, B. M. (2013). Perception of maximum reaching height when the means of reaching are no longer in view. Ecological Psychology, 25(1), 63–80.CrossRef
Metagegevens
Titel
The visual and haptic contributions to hand perception
Auteurs
Lara A. Coelho
Claudia LR Gonzalez
Publicatiedatum
13-05-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2018
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0870-x

Andere artikelen Uitgave 5/2018

Psychological Research 5/2018 Naar de uitgave