The Guttman errors as a tool for response shift detection at subgroup and item levels | mijn-bsl Skip to main content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Quality of Life Research 6/2016

01-06-2016 | Special Section: Response Shift Effects at Item Level (by invitation only)

The Guttman errors as a tool for response shift detection at subgroup and item levels

Auteurs: Myriam Blanchin, Véronique Sébille, Alice Guilleux, Jean-Benoit Hardouin

Gepubliceerd in: Quality of Life Research | Uitgave 6/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

Statistical methods for identifying response shift (RS) at the individual level could be of great practical value in interpreting change in PRO data. Guttman errors (GE) may help to identify discrepancies in respondent’s answers to items compared to an expected response pattern and to identify subgroups of patients that are more likely to present response shift. This study explores the benefits of using a GE-based method for RS detection at the subgroup and item levels.

Methods

The analysis was performed on the SatisQoL study. The number of GE was determined for each individual at each time of measurement (at baseline T0 and 6 months after discharge M6). Individuals showing discrepancies (with many GE) were suspected to interpret the items differently from the majority of the sample. Patients having a large number of GE at M6 only and not at T0 were assumed to present RS. Patients having a small number of GE at T0 and M6 were assumed to present no RS. The RespOnse Shift ALgorithm in Item response theory (ROSALI) was then applied on the whole sample and on both groups.

Results

Different types of RS (non-uniform recalibration, reprioritization) were more prevalent in the group composed of patients assumed to present RS based on GE. On the opposite, no RS was detected on patients having few GE.

Conclusions

Guttman errors and item response theory models seem to be relevant tools to discriminate individuals affected by RS from the others at the item level.
Literatuur
1.
go back to reference Schwartz, C. E., & Sprangers, M. A. (1999). Methodological approaches for assessing response shift in longitudinal health related quality-of-life research. Social Science and Medicine, 48(11), 1531–1548. CrossRefPubMed Schwartz, C. E., & Sprangers, M. A. (1999). Methodological approaches for assessing response shift in longitudinal health related quality-of-life research. Social Science and Medicine, 48(11), 1531–1548. CrossRefPubMed
2.
go back to reference Oort, F. J. (2005). Using structural equation modeling to detect response shifts and true change. Quality of Life Research, 14(3), 587–598. CrossRefPubMed Oort, F. J. (2005). Using structural equation modeling to detect response shifts and true change. Quality of Life Research, 14(3), 587–598. CrossRefPubMed
3.
go back to reference Guilleux, A., Blanchin, M., Vanier, A., Guillemin, F., Falissard, B., Hardouin, J. B., & Sébille, V. (2015). RespOnse shift algorithm in item response theory (ROSALI) for response shift detection with missing data in longitudinal patient-reported outcome studies. Quality of Life Research, 24(3), 553–564. CrossRefPubMed Guilleux, A., Blanchin, M., Vanier, A., Guillemin, F., Falissard, B., Hardouin, J. B., & Sébille, V. (2015). RespOnse shift algorithm in item response theory (ROSALI) for response shift detection with missing data in longitudinal patient-reported outcome studies. Quality of Life Research, 24(3), 553–564. CrossRefPubMed
5.
go back to reference Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory (1st ed., Vol. 5). Thousand Oaks: Sage. Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory (1st ed., Vol. 5). Thousand Oaks: Sage.
6.
go back to reference Kepka, S., Baumann, C., Anota, A., Buron, G., Spitz, E., Auquier, P., & Mercier, M. (2013). The relationship between traits optimism and anxiety and health-related quality of life in patients hospitalized for chronic diseases: Data from the SATISQOL study. Health and Quality of Life Outcomes, 11(1), 134. doi: 10.​1186/​1477-7525-11-134. CrossRefPubMedPubMedCentral Kepka, S., Baumann, C., Anota, A., Buron, G., Spitz, E., Auquier, P., & Mercier, M. (2013). The relationship between traits optimism and anxiety and health-related quality of life in patients hospitalized for chronic diseases: Data from the SATISQOL study. Health and Quality of Life Outcomes, 11(1), 134. doi: 10.​1186/​1477-7525-11-134. CrossRefPubMedPubMedCentral
7.
go back to reference Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30(6), 473–483. CrossRefPubMed Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30(6), 473–483. CrossRefPubMed
8.
go back to reference Leplège, A., Ecosse, E., Verdier, A. & Perneger, T. V. (1998). The French SF-36 health survey: Translation, cultural adaptation and preliminary psychometric evaluation. Journal of Clinical Epidemiology, 51(11), 1013–1023. doi: 10.​1016/​S0895-4356(98)00093-6. Leplège, A., Ecosse, E., Verdier, A. & Perneger, T. V. (1998). The French SF-36 health survey: Translation, cultural adaptation and preliminary psychometric evaluation. Journal of Clinical Epidemiology, 51(11), 1013–1023. doi: 10.​1016/​S0895-4356(98)00093-6.
10.
go back to reference Meijer, R. R. (1994). The number of Guttman errors as a simple and powerful person-fit statistic. Applied Psychological Measurement, 18(4), 311–314. CrossRef Meijer, R. R. (1994). The number of Guttman errors as a simple and powerful person-fit statistic. Applied Psychological Measurement, 18(4), 311–314. CrossRef
11.
go back to reference Tendeiro, J. N., & Meijer, R. R. (2014). Detection of invalid test scores: The usefulness of simple nonparametric statistics. Journal of Educational Measurement, 51(3), 239–259. CrossRef Tendeiro, J. N., & Meijer, R. R. (2014). Detection of invalid test scores: The usefulness of simple nonparametric statistics. Journal of Educational Measurement, 51(3), 239–259. CrossRef
12.
go back to reference Lanza, S. T., & Rhoades, B. L. (2013). Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science, 14(2), 157–168. CrossRefPubMedPubMedCentral Lanza, S. T., & Rhoades, B. L. (2013). Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science, 14(2), 157–168. CrossRefPubMedPubMedCentral
13.
go back to reference Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 311–359). New York: Springer. CrossRef Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 311–359). New York: Springer. CrossRef
14.
go back to reference van Leeuwen, C. M. C., Post, M. W. M., van der Woude, L. H. V., de Groot, S., Smit, C., van Kuppevelt, D., & Lindeman, E. (2012). Changes in life satisfaction in persons with spinal cord injury during and after inpatient rehabilitation: Adaptation or measurement bias? Quality of Life Research, 21(9), 1499–1508. CrossRefPubMedPubMedCentral van Leeuwen, C. M. C., Post, M. W. M., van der Woude, L. H. V., de Groot, S., Smit, C., van Kuppevelt, D., & Lindeman, E. (2012). Changes in life satisfaction in persons with spinal cord injury during and after inpatient rehabilitation: Adaptation or measurement bias? Quality of Life Research, 21(9), 1499–1508. CrossRefPubMedPubMedCentral
15.
go back to reference McIntosh, C. N. (2013). Pitfalls in subgroup analysis based on growth mixture models: A commentary on Van Leeuwen et al. (2012). Quality of Life Research, 22(9), 2625–2629. CrossRefPubMed McIntosh, C. N. (2013). Pitfalls in subgroup analysis based on growth mixture models: A commentary on Van Leeuwen et al. (2012). Quality of Life Research, 22(9), 2625–2629. CrossRefPubMed
16.
go back to reference Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12(1), 3–27. CrossRef Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12(1), 3–27. CrossRef
17.
go back to reference Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469. CrossRef Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469. CrossRef
18.
go back to reference Kadengye, D. T., Ceulemans, E., & Van den Noortgate, W. (2014). A generalized longitudinal mixture IRT model for measuring differential growth in learning environments. Behavior Research Methods, 46(3), 823–840. PubMed Kadengye, D. T., Ceulemans, E., & Van den Noortgate, W. (2014). A generalized longitudinal mixture IRT model for measuring differential growth in learning environments. Behavior Research Methods, 46(3), 823–840. PubMed
19.
go back to reference Boom, J. (2015). A new visualization and conceptualization of categorical longitudinal development: Measurement invariance and change. Frontiers in Psychology, 6, 289. CrossRefPubMedPubMedCentral Boom, J. (2015). A new visualization and conceptualization of categorical longitudinal development: Measurement invariance and change. Frontiers in Psychology, 6, 289. CrossRefPubMedPubMedCentral
20.
go back to reference Lu, Z. L., Zhang, Z., & Lubke, G. (2011). Bayesian inference for growth mixture models with latent class dependent missing data. Multivariate Behavioral Research, 46(4), 567–597. CrossRefPubMedPubMedCentral Lu, Z. L., Zhang, Z., & Lubke, G. (2011). Bayesian inference for growth mixture models with latent class dependent missing data. Multivariate Behavioral Research, 46(4), 567–597. CrossRefPubMedPubMedCentral
21.
go back to reference Verhagen, J., & Fox, J.-P. (2013). Longitudinal measurement in health-related surveys. A Bayesian joint growth model for multivariate ordinal responses. Statistics in Medicine, 32(17), 2988–3005. CrossRefPubMed Verhagen, J., & Fox, J.-P. (2013). Longitudinal measurement in health-related surveys. A Bayesian joint growth model for multivariate ordinal responses. Statistics in Medicine, 32(17), 2988–3005. CrossRefPubMed
22.
go back to reference Sprangers, M. A. G., & Schwartz, C. E. (1999). Integrating response shift into health-related quality of life research: A theoretical model. Social Science and Medicine, 48(11), 1507–1515. CrossRefPubMed Sprangers, M. A. G., & Schwartz, C. E. (1999). Integrating response shift into health-related quality of life research: A theoretical model. Social Science and Medicine, 48(11), 1507–1515. CrossRefPubMed
23.
go back to reference Rapkin, B. D. & Schwartz, C. E. (2004). Toward a theoretical model of quality-of-life appraisal: Implications of findings from studies of response shift. Health and Quality of Life Outcomes, 2(14). doi: 10.​1186/​1477-7525-2-14. Rapkin, B. D. & Schwartz, C. E. (2004). Toward a theoretical model of quality-of-life appraisal: Implications of findings from studies of response shift. Health and Quality of Life Outcomes, 2(14). doi: 10.​1186/​1477-7525-2-14.
24.
go back to reference Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hillsdale: Erlbaum. Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hillsdale: Erlbaum.
25.
go back to reference Osterlind, S. J., & Everson, H. T. (2009). Differential item functioning (2nd ed.). Thousand Oaks: Sage. CrossRef Osterlind, S. J., & Everson, H. T. (2009). Differential item functioning (2nd ed.). Thousand Oaks: Sage. CrossRef
Metagegevens
Titel
The Guttman errors as a tool for response shift detection at subgroup and item levels
Auteurs
Myriam Blanchin
Véronique Sébille
Alice Guilleux
Jean-Benoit Hardouin
Publicatiedatum
01-06-2016
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 6/2016
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-016-1268-8

Andere artikelen Uitgave 6/2016

Quality of Life Research 6/2016 Naar de uitgave