Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Quality of Life Research 9/2021

16-04-2021

The development and initial validation of the Breast Cancer Recurrence instrument (BreastCaRe)—a patient-reported outcome measure for detecting symptoms of recurrence after breast cancer

Auteurs: Beverley Lim Høeg, Lena Saltbæk, Karl Bang Christensen, Randi Valbjørn Karlsen, Christoffer Johansen, Susanne Oksbjerg Dalton, Antonia Bennett, Pernille Envold Bidstrup

Gepubliceerd in: Quality of Life Research | Uitgave 9/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

Patient-reported outomes (PRO) may facilitate prompt treatment. We describe the development and psychometric properties of the first instrument to monitor for symptoms of breast cancer (BC) recurrence.

Methods

This study is nested in the MyHealth randomized trial of nurse-led follow-up based on electronically-collected PROs. We constructed items assessing symptoms of potential recurrence through expert interviews with six BC specialists in Denmark. Semi-structured cognitive interviews were carried out with a patient panel to assess acceptability and comprehensibility. Items were subsequently tested in a population of 1170 women 1–10 years after completing BC treatment. We carried out multiple-groups confirmatory factor analysis (CFA) and Rasch analysis to test dimensionality, local dependence (LD) and differential item functioning (DIF) according to sociodemographic and treatment-related factors. Clinical data was obtained from the Danish Breast Cancer Group registry.

Results

Twenty-two items were generated for the Breast Cancer Recurrence instrument (BreastCaRe). Cognitive testing resulted in clearer items. Seven subscales based on general, bone, liver, lung, brain, locoregional and contralateral recurrence symptoms were proposed. Both CFA and Rasch models confirmed the factor structure. No DIF was identified. Five item pairs showed LD but all items were retained to avoid loss of clinical information. Rasch models taking LD into account were used to generate a standardized scoring table for each subscale.

Conclusions

The BreastCaRe has good content and structural validity, patient acceptability and measurement invariance. We are preparing to examine the predictive validity of this new instrument.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
1.
go back to reference Yang, L. Y., Manhas, D. S., Howard, A. F., & Olson, R. A. (2018). Patient-reported outcome use in oncology: a systematic review of the impact on patient-clinician communication. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer., 26(1), 41–60. https://​doi.​org/​10.​1007/​s00520-017-3865-7. CrossRef Yang, L. Y., Manhas, D. S., Howard, A. F., & Olson, R. A. (2018). Patient-reported outcome use in oncology: a systematic review of the impact on patient-clinician communication. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer., 26(1), 41–60. https://​doi.​org/​10.​1007/​s00520-017-3865-7. CrossRef
6.
go back to reference Coulter A, Potter C, Peters M, Fitzpatrick R. Cancer PROMs: a scoping study: Macmillan Cancer Support2015. Coulter A, Potter C, Peters M, Fitzpatrick R. Cancer PROMs: a scoping study: Macmillan Cancer Support2015.
15.
go back to reference Denis, F., Lethrosne, C., Pourel, N., Molinier, O., Pointreau, Y., Domont, J., Bourgeois, H., Senellart, H., Trémolières, P., Lizée, T., Bennouna, J., Urban, T., El Khouri, C., Charron, A., Septans, A.-L., Balavoine, M., Landry, S., Solal-Céligny, P., & Letellier, C. (2017). Randomized trial comparing a web-mediated follow up with routine surveillance in lung cancer patients. Journal of the National Cancer Institute. https://​doi.​org/​10.​1093/​jnci/​djx029. CrossRefPubMed Denis, F., Lethrosne, C., Pourel, N., Molinier, O., Pointreau, Y., Domont, J., Bourgeois, H., Senellart, H., Trémolières, P., Lizée, T., Bennouna, J., Urban, T., El Khouri, C., Charron, A., Septans, A.-L., Balavoine, M., Landry, S., Solal-Céligny, P., & Letellier, C. (2017). Randomized trial comparing a web-mediated follow up with routine surveillance in lung cancer patients. Journal of the National Cancer Institute. https://​doi.​org/​10.​1093/​jnci/​djx029. CrossRefPubMed
18.
go back to reference Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., et al. (2010). The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation., 19(4), 539–549. https://​doi.​org/​10.​1007/​s11136-010-9606-8. CrossRef Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., et al. (2010). The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation., 19(4), 539–549. https://​doi.​org/​10.​1007/​s11136-010-9606-8. CrossRef
19.
go back to reference ClinicalTrials.gov. MyHealth: Follow-up After Breast Cancer Treatment (MyHealth). 2016. https://​clinicaltrials.​gov/​ct2/​show/​NCT02949167.​ ClinicalTrials.gov. MyHealth: Follow-up After Breast Cancer Treatment (MyHealth). 2016. https://​clinicaltrials.​gov/​ct2/​show/​NCT02949167.​
21.
go back to reference Bast, R. C., Croce, C. M., Hait, W. N., Hong, W. K., Kufe, D. W., Piccart-Gebhart, M., et al. (Eds.). (2017). Cancer Medicine. (9th ed.). Wiley-Blackwell: Hoboken, NJ. Bast, R. C., Croce, C. M., Hait, W. N., Hong, W. K., Kufe, D. W., Piccart-Gebhart, M., et al. (Eds.). (2017). Cancer Medicine. (9th ed.). Wiley-Blackwell: Hoboken, NJ.
23.
go back to reference Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376. CrossRef Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376. CrossRef
24.
go back to reference Pedersen, C. B., Gøtzsche, H., Møller, J. Ø., & Mortensen, P. B. (2006). The Danish civil registration system. A cohort of eight million persons. Danish Medical Bulletin, 53, 441–449. PubMed Pedersen, C. B., Gøtzsche, H., Møller, J. Ø., & Mortensen, P. B. (2006). The Danish civil registration system. A cohort of eight million persons. Danish Medical Bulletin, 53, 441–449. PubMed
27.
go back to reference Scott NW, Fayers PM, Aaronson PM, Bottomley A, de Graeff A, Groenvold A et al. EORTC QLQ-C30 Reference Values 2008. Scott NW, Fayers PM, Aaronson PM, Bottomley A, de Graeff A, Groenvold A et al. EORTC QLQ-C30 Reference Values 2008.
28.
go back to reference Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software; Vol 1, Issue 2 (2012). 2012. Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software; Vol 1, Issue 2 (2012). 2012.
32.
go back to reference Christensen KB, Kreiner S, Mesbah M, editors. Rasch Models in Health. Wiley; 2012. Christensen KB, Kreiner S, Mesbah M, editors. Rasch Models in Health. Wiley; 2012.
33.
go back to reference Kreiner, S., & Christensen, K. B. (2002). Graphical Rasch models. In M. Mesbah, B. F. Cole, & M. L. T. Lee (Eds.), Statistical Methods for Quality of Life Studies: Design, Measurements and Analysis. (pp. 187–203). Boston: Springer. CrossRef Kreiner, S., & Christensen, K. B. (2002). Graphical Rasch models. In M. Mesbah, B. F. Cole, & M. L. T. Lee (Eds.), Statistical Methods for Quality of Life Studies: Design, Measurements and Analysis. (pp. 187–203). Boston: Springer. CrossRef
34.
go back to reference Smith, R. M., Schumacker, R. E., & Bush, M. J. (1998). Using item mean squares to evaluate fit to the Rasch model. Journal of Outcome Measurement, 2(1), 66–78. PubMed Smith, R. M., Schumacker, R. E., & Bush, M. J. (1998). Using item mean squares to evaluate fit to the Rasch model. Journal of Outcome Measurement, 2(1), 66–78. PubMed
36.
go back to reference Christensen K, Kreiner S. Item Fit Statistics. In: Christensen K, Kreiner S, Mesbah M, editors. Rasch Models in Health. 2013. p. 83–104. Christensen K, Kreiner S. Item Fit Statistics. In: Christensen K, Kreiner S, Mesbah M, editors. Rasch Models in Health. 2013. p. 83–104.
37.
go back to reference Kreiner, S., & Christensen, K. B. (2013). Two Tests of Local Independence. In K. B. Christensen, S. Kreiner, & M. Mesbah (Eds.), Rasch Models in Health Hoboken. (pp. 131–136). NJ: John Wiley & Sons. CrossRef Kreiner, S., & Christensen, K. B. (2013). Two Tests of Local Independence. In K. B. Christensen, S. Kreiner, & M. Mesbah (Eds.), Rasch Models in Health Hoboken. (pp. 131–136). NJ: John Wiley & Sons. CrossRef
39.
go back to reference Kreiner S, Christensen KB. Overall Tests of the Rasch Model. In: Kreiner S, Christensen KB, Mesbah M, editors. Rasch Models in Health. 2013. p. 105–10. Kreiner S, Christensen KB. Overall Tests of the Rasch Model. In: Kreiner S, Christensen KB, Mesbah M, editors. Rasch Models in Health. 2013. p. 105–10.
41.
go back to reference Christensen, K. B. (2013). Conditional maximum likelihood estimation in polytomous rasch models using SAS. ISRN Computational Mathematics, 2013, 1–8. CrossRef Christensen, K. B. (2013). Conditional maximum likelihood estimation in polytomous rasch models using SAS. ISRN Computational Mathematics, 2013, 1–8. CrossRef
42.
go back to reference Christensen, K. B. (2006). Fitting polytomous Rasch models in SAS. Journal of Applied Measurement, 7(4), 407–417. PubMed Christensen, K. B. (2006). Fitting polytomous Rasch models in SAS. Journal of Applied Measurement, 7(4), 407–417. PubMed
43.
go back to reference Kreiner S, Nielsen T. Item analysis in DIGRAM 3.04: Part I: Guided tours. Department of Biostastistics, University of Copenhagen 2013. Kreiner S, Nielsen T. Item analysis in DIGRAM 3.04: Part I: Guided tours. Department of Biostastistics, University of Copenhagen 2013.
49.
go back to reference DeSantis, C., Ma, J., Bryan, L., & Jemal, A. (2014). Breast cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 64(1), 52. DeSantis, C., Ma, J., Bryan, L., & Jemal, A. (2014). Breast cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 64(1), 52.
Metagegevens
Titel
The development and initial validation of the Breast Cancer Recurrence instrument (BreastCaRe)—a patient-reported outcome measure for detecting symptoms of recurrence after breast cancer
Auteurs
Beverley Lim Høeg
Lena Saltbæk
Karl Bang Christensen
Randi Valbjørn Karlsen
Christoffer Johansen
Susanne Oksbjerg Dalton
Antonia Bennett
Pernille Envold Bidstrup
Publicatiedatum
16-04-2021
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 9/2021
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-021-02841-1