Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2012

01-03-2012 | Review

The convergent evolution of neural substrates for cognition

Auteur: Onur Güntürkün

Gepubliceerd in: Psychological Research | Uitgave 2/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

This review describes a case of convergence in the evolution of brain and cognition. Both mammals and birds can organize their behavior flexibly over time and evolved similar cognitive skills. The avian forebrain displays no lamination that corresponds to the mammalian neocortex; hence, lamination does not seem to be a requirement for higher cognitive functions. In mammals, executive functions are associated with the prefrontal cortex. The corresponding structure in birds is the nidopallium caudolaterale. Anatomic, neurochemical, electrophysiologic and behavioral studies show these structures to be highly similar, but not homologous. Thus, despite the presence (mammals) or the absence (birds) of a laminated forebrain, ‘prefrontal’ areas in mammals and birds converged over evolutionary time into a highly similar neural architecture. The neuroarchitectonic degrees of freedom to create different neural architectures that generate identical prefrontal functions seem to be very limited.
Literatuur
go back to reference Allen, C., & Bekoff, M. (1997). Species of Mind. Cambridge: MIT. Allen, C., & Bekoff, M. (1997). Species of Mind. Cambridge: MIT.
go back to reference Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation (pp. 47–90). San Diego: Academic Press. Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation (pp. 47–90). San Diego: Academic Press.
go back to reference Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.PubMedCrossRef Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.PubMedCrossRef
go back to reference Bast, T., Diekamp, D., Thiel, C., Schwarting, R. K. W., & Güntürkün, O. (2002). Microdialysis in the ‘Prefrontal Cortex’ and the striatum of pigeons (Columba livia): Evidence for dopaminergic volume transmission in the avian associative forebrain. The Journal of Comparative Neurology, 446, 58–67.PubMedCrossRef Bast, T., Diekamp, D., Thiel, C., Schwarting, R. K. W., & Güntürkün, O. (2002). Microdialysis in the ‘Prefrontal Cortex’ and the striatum of pigeons (Columba livia): Evidence for dopaminergic volume transmission in the avian associative forebrain. The Journal of Comparative Neurology, 446, 58–67.PubMedCrossRef
go back to reference Bird C. D., Emery N. J. (2009). Insightful problem solving and creative tool modification by captive nontool-using rooks. Proceedings of the National Academy of Sciences, USA, 106, 10370–10375. Bird C. D., Emery N. J. (2009). Insightful problem solving and creative tool modification by captive nontool-using rooks. Proceedings of the National Academy of Sciences, USA, 106, 10370–10375.
go back to reference Blackledge, T.A., Gillespie, R. G. (2004). Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proceedings of the National Academy of Sciences, USA, 101:16228–16332. Blackledge, T.A., Gillespie, R. G. (2004). Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proceedings of the National Academy of Sciences, USA, 101:16228–16332.
go back to reference Browning, R., Bruce Overmier, J., & Colombo, M. (2011). Delay activity in avian prefrontal cortex—sample code or reward code? European Journal of Neuroscience, 33, 726–735.PubMedCrossRef Browning, R., Bruce Overmier, J., & Colombo, M. (2011). Delay activity in avian prefrontal cortex—sample code or reward code? European Journal of Neuroscience, 33, 726–735.PubMedCrossRef
go back to reference Bugnyar, T., & Heinrich, B. (2005). Ravens, Corvus corax, differentiate between knowledgeable and ignorant competitors. Proceedings of the Royal Society of London, Series B: Biological Sciences, 272, 1641–1646. Bugnyar, T., & Heinrich, B. (2005). Ravens, Corvus corax, differentiate between knowledgeable and ignorant competitors. Proceedings of the Royal Society of London, Series B: Biological Sciences, 272, 1641–1646.
go back to reference Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan for the future? Nature Reviews Neuroscience, 4, 685–691.PubMedCrossRef Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan for the future? Nature Reviews Neuroscience, 4, 685–691.PubMedCrossRef
go back to reference Cnotka, J., Güntürkün, O., Rehkämper, G., Gray, R. D., & Hunt, G. R. (2008). Extraordinary large brains in tool-using New Caledonian Crows (Corvus moneduloides). Neuroscience Letters, 433, 241–245.PubMedCrossRef Cnotka, J., Güntürkün, O., Rehkämper, G., Gray, R. D., & Hunt, G. R. (2008). Extraordinary large brains in tool-using New Caledonian Crows (Corvus moneduloides). Neuroscience Letters, 433, 241–245.PubMedCrossRef
go back to reference Deaner, R. O., van Schaik, C. P., & Johnson, V. (2006). Do some taxa have better domain-general cognition than others? A meta-analysis of non-human primate studies. Evolutionary Psychology, 4, 149–196. Deaner, R. O., van Schaik, C. P., & Johnson, V. (2006). Do some taxa have better domain-general cognition than others? A meta-analysis of non-human primate studies. Evolutionary Psychology, 4, 149–196.
go back to reference Diekamp, B., Gagliardo, A., & Güntürkün, O. (2002a). Nonspatial and subdivision-specific working memory deficits after selective lesions of the avian ‘prefrontal cortex’. The Journal of Neuroscience, 22, 9573–9580.PubMed Diekamp, B., Gagliardo, A., & Güntürkün, O. (2002a). Nonspatial and subdivision-specific working memory deficits after selective lesions of the avian ‘prefrontal cortex’. The Journal of Neuroscience, 22, 9573–9580.PubMed
go back to reference Diekamp, B., Kalt, T., Güntürkün, O. (2002a). Working memory neurons in pigeons. The Journal of Neuroscience, 22 RC210, 1–5. Diekamp, B., Kalt, T., Güntürkün, O. (2002a). Working memory neurons in pigeons. The Journal of Neuroscience, 22 RC210, 1–5.
go back to reference Dunnett, S. B., Nathwani, F., & Brasted, P. J. (1999). Medial prefrontal and neostriatal lesions disrupt performance in an operant delayed alternation task in rats. Behavioural Brain Research, 106, 13–28.PubMedCrossRef Dunnett, S. B., Nathwani, F., & Brasted, P. J. (1999). Medial prefrontal and neostriatal lesions disrupt performance in an operant delayed alternation task in rats. Behavioural Brain Research, 106, 13–28.PubMedCrossRef
go back to reference Durstewitz, D., Kelc, M., & Güntürkün, O. (1999). A neurocomputational theory of the dopaminergic modulation of working memory functions. The Journal of Neuroscience, 19, 2807–2822.PubMed Durstewitz, D., Kelc, M., & Güntürkün, O. (1999). A neurocomputational theory of the dopaminergic modulation of working memory functions. The Journal of Neuroscience, 19, 2807–2822.PubMed
go back to reference Durstewitz, D., Kröner, S., Hemmings, H. C., Jr, & Güntürkün, O. (1998). The dopaminergic innervation of the pigeon telencephalon: Distribution of DARPP-32 and cooccurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience, 83, 763–779.PubMedCrossRef Durstewitz, D., Kröner, S., Hemmings, H. C., Jr, & Güntürkün, O. (1998). The dopaminergic innervation of the pigeon telencephalon: Distribution of DARPP-32 and cooccurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience, 83, 763–779.PubMedCrossRef
go back to reference Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83, 1733–1750.PubMed Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83, 1733–1750.PubMed
go back to reference Edinger, L., Wallenberg, A., Holmes, G. M. (1903). Untersuchungen über die vergleichende Anatomie des Gehirns. 3. Das Vorderhirn der Vögel. Abhandlungen der Senckenbergischen Gesellschaft, 20, 343–426. Edinger, L., Wallenberg, A., Holmes, G. M. (1903). Untersuchungen über die vergleichende Anatomie des Gehirns. 3. Das Vorderhirn der Vögel. Abhandlungen der Senckenbergischen Gesellschaft, 20, 343–426.
go back to reference Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science, 306, 1903–1907.PubMedCrossRef Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science, 306, 1903–1907.PubMedCrossRef
go back to reference Fersen von, L. & Güntürkün, O. (1990). Visual memory lateralization in pigeons. Neuropsychologia, 28, 1–7. Fersen von, L. & Güntürkün, O. (1990). Visual memory lateralization in pigeons. Neuropsychologia, 28, 1–7.
go back to reference Fersen von, L., Wynne, C. D., Delius, J. D., & Staddon, J. E. (1990). Deductive reasoning in pigeons. Naturwissenschaften, 77, 548–549.CrossRef Fersen von, L., Wynne, C. D., Delius, J. D., & Staddon, J. E. (1990). Deductive reasoning in pigeons. Naturwissenschaften, 77, 548–549.CrossRef
go back to reference Gehring, W. J. (2005). New perspectives on eye development and the evolution of eyes and photoreceptors. Journal of Heredity, 96, 171–184.PubMedCrossRef Gehring, W. J. (2005). New perspectives on eye development and the evolution of eyes and photoreceptors. Journal of Heredity, 96, 171–184.PubMedCrossRef
go back to reference Güntürkün, O. (1997). Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent: functional similarities to the mammalian prefrontal system? Journal of Brain Research, 38, 133–143.PubMed Güntürkün, O. (1997). Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent: functional similarities to the mammalian prefrontal system? Journal of Brain Research, 38, 133–143.PubMed
go back to reference Güntürkün, O. (2005). The avian ‘prefrontal cortex’ and cognition. Current Opinion in Neurobiology, 15, 686–693.PubMedCrossRef Güntürkün, O. (2005). The avian prefrontal cortex and cognition. Current Opinion in Neurobiology, 15, 686–693.PubMedCrossRef
go back to reference Güntürkün, O., & Durstewitz, D. (2001). Multimodal areas of the avian forebrain—blueprints for cognition? In G. Roth & M. Wullimann (Eds.), Brain Evolution and Cognition (pp. 431–450). Heidelberg: Spektrum Akademischer Verlag. Güntürkün, O., & Durstewitz, D. (2001). Multimodal areas of the avian forebrain—blueprints for cognition? In G. Roth & M. Wullimann (Eds.), Brain Evolution and Cognition (pp. 431–450). Heidelberg: Spektrum Akademischer Verlag.
go back to reference Güntürkün, O., & Remy, M. (1990). The topographical projection of the nisthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon. Neuroscience Letters, 111, 18–22.PubMedCrossRef Güntürkün, O., & Remy, M. (1990). The topographical projection of the nisthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon. Neuroscience Letters, 111, 18–22.PubMedCrossRef
go back to reference Hartmann, B., & Güntürkün, O. (1998). Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons—possible behavioral equivalencies to the mammalian prefrontal system. Behavioural Brain Research, 96, 125–133.PubMedCrossRef Hartmann, B., & Güntürkün, O. (1998). Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons—possible behavioral equivalencies to the mammalian prefrontal system. Behavioural Brain Research, 96, 125–133.PubMedCrossRef
go back to reference Honig, W. K. (1978). Studies of Working Memory in the Pigeon. In S. H. Hulse & W. K. Honig (Eds.), Cognitive Processes in Animal Behavior (pp. 211–248). New York: Hillsdale. Honig, W. K. (1978). Studies of Working Memory in the Pigeon. In S. H. Hulse & W. K. Honig (Eds.), Cognitive Processes in Animal Behavior (pp. 211–248). New York: Hillsdale.
go back to reference Hunt, G. R., & Gray, R. D. (2003). Diversification and cumulative evolution in new Caledonian crow tool manufacture. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, 867–874. Hunt, G. R., & Gray, R. D. (2003). Diversification and cumulative evolution in new Caledonian crow tool manufacture. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, 867–874.
go back to reference Iwaniuk, A. N., Dean, K. M., Nelson, J. E. (2004). A mosaic pattern characterizes the evolution of the avian brain. Proceedings of the Royal Society of London, Series B: Biological Sciences, 271, S148–S151. Iwaniuk, A. N., Dean, K. M., Nelson, J. E. (2004). A mosaic pattern characterizes the evolution of the avian brain. Proceedings of the Royal Society of London, Series B: Biological Sciences, 271, S148–S151.
go back to reference Jarvis, E. D., Güntürkün, O., Bruce, L. L., Csillag, A., Karten, H., Kuenzel, W., et al. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Review Neuroscience, 6, 151–159.CrossRef Jarvis, E. D., Güntürkün, O., Bruce, L. L., Csillag, A., Karten, H., Kuenzel, W., et al. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Review Neuroscience, 6, 151–159.CrossRef
go back to reference Jerison, H. J. (1979). The evolution of diversity in brain size. In M. E. Hahn (Ed.), Development and Evolution of Brain Size (pp. 29–57). New York: Academic Press. Jerison, H. J. (1979). The evolution of diversity in brain size. In M. E. Hahn (Ed.), Development and Evolution of Brain Size (pp. 29–57). New York: Academic Press.
go back to reference Karakuyu, D., Herold, C., Güntürkün, O., & Diekamp, B. (2007). Differential increase of extracellular dopamine and serotonin in the ‘prefrontal cortex’ and striatum of pigeons during working memory. European Journal of Neuroscience, 26, 2293–2302.PubMedCrossRef Karakuyu, D., Herold, C., Güntürkün, O., & Diekamp, B. (2007). Differential increase of extracellular dopamine and serotonin in the ‘prefrontal cortex’ and striatum of pigeons during working memory. European Journal of Neuroscience, 26, 2293–2302.PubMedCrossRef
go back to reference Keverne, E. B., Martel, F. L., Nevison, C. M. (1996). Primate brain evolution: genetic and functional considerations, Proceedings of the Royal Society of London, Series B: Biological Sciences, 262, 689–696. Keverne, E. B., Martel, F. L., Nevison, C. M. (1996). Primate brain evolution: genetic and functional considerations, Proceedings of the Royal Society of London, Series B: Biological Sciences, 262, 689–696.
go back to reference Kirsch, J., Güntürkün, O., & Rose, J. (2008). Insight without cortex: Lessons from the avian brain. Consciousness and Cognition, 17, 475–483.PubMedCrossRef Kirsch, J., Güntürkün, O., & Rose, J. (2008). Insight without cortex: Lessons from the avian brain. Consciousness and Cognition, 17, 475–483.PubMedCrossRef
go back to reference Kröner, S., Gottmann, K., Hatt H., Güntürkün, O. (2002). Cell types within the neostriatum caudolaterale of the chick: Intrinsic electrophysiological and anatomical properties. Neuroscience, 110, 495–473. Kröner, S., Gottmann, K., Hatt H., Güntürkün, O. (2002). Cell types within the neostriatum caudolaterale of the chick: Intrinsic electrophysiological and anatomical properties. Neuroscience, 110, 495–473.
go back to reference Kröner, S., & Güntürkün, O. (1999). Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro- and anterograde pathway tracing study. The Journal of Comparative Neurology, 407, 228–260.PubMedCrossRef Kröner, S., & Güntürkün, O. (1999). Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro- and anterograde pathway tracing study. The Journal of Comparative Neurology, 407, 228–260.PubMedCrossRef
go back to reference Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63, 233–246.PubMedCrossRef Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63, 233–246.PubMedCrossRef
go back to reference Lefebvre, L., & Sol, D. (2008). Brains, lifestyles and cognition: Are there general trends? Brain, Behavior and Evolution, 72, 135–144.PubMedCrossRef Lefebvre, L., & Sol, D. (2008). Brains, lifestyles and cognition: Are there general trends? Brain, Behavior and Evolution, 72, 135–144.PubMedCrossRef
go back to reference Machens, C. K., Romo, R., & Brody, C. D. (2005). Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science, 307, 1121–1124.PubMedCrossRef Machens, C. K., Romo, R., & Brody, C. D. (2005). Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science, 307, 1121–1124.PubMedCrossRef
go back to reference Medina, L., & Reiner, A. (2000). Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neuroscience, 23, 1–12.CrossRef Medina, L., & Reiner, A. (2000). Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neuroscience, 23, 1–12.CrossRef
go back to reference Mehlhorn, J., Rehkämper, G., Hunt, G. R., Gray, R., & Güntürkün, O. (2010). Tool making New Caledonian crows have larger associative brain areas. Brain, Behavior Evolution, 75, 63–70.CrossRef Mehlhorn, J., Rehkämper, G., Hunt, G. R., Gray, R., & Güntürkün, O. (2010). Tool making New Caledonian crows have larger associative brain areas. Brain, Behavior Evolution, 75, 63–70.CrossRef
go back to reference Metzger, M., Jiang, S., & Braun, K. (2002). A quantitative immuno-electron microscopic study of dopamine terminals in forebrain regions of the domestic chick involved in filial imprinting. Neuroscience, 111, 611–623.PubMedCrossRef Metzger, M., Jiang, S., & Braun, K. (2002). A quantitative immuno-electron microscopic study of dopamine terminals in forebrain regions of the domestic chick involved in filial imprinting. Neuroscience, 111, 611–623.PubMedCrossRef
go back to reference Pollok, B., Prior, H., & Güntürkün, O. (2000). Development of object-permanence in the food-storing magpie (Pica pica). Journal of Comparative Psychology, 114, 148–157.PubMedCrossRef Pollok, B., Prior, H., & Güntürkün, O. (2000). Development of object-permanence in the food-storing magpie (Pica pica). Journal of Comparative Psychology, 114, 148–157.PubMedCrossRef
go back to reference Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-induced behaviour in the magpie (Pica pica): Evidence for self-recognition. PLoS Biology, 6, e202.PubMedCrossRef Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-induced behaviour in the magpie (Pica pica): Evidence for self-recognition. PLoS Biology, 6, e202.PubMedCrossRef
go back to reference Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S., et al. (2000). Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. The Journal of Comparative Neurology, 424, 409–438. Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S., et al. (2000). Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. The Journal of Comparative Neurology, 424, 409–438.
go back to reference Reader, S. M., Laland, K. N. (2002). Social intelligence, innovation and enhanced brain size in primates. Proceedings of the National Academy of Sciences, USA, 99, 4436–4441. Reader, S. M., Laland, K. N. (2002). Social intelligence, innovation and enhanced brain size in primates. Proceedings of the National Academy of Sciences, USA, 99, 4436–4441.
go back to reference Rehkämper, G., Frahm, H. D., & Zilles, K. (1991). Quantitative development of brain and brain structures in birds (Galliformes und Passeriformis) compared to that in mammals (insectivores and primates). Brain Behavior Evolution, 37, 125–143.CrossRef Rehkämper, G., Frahm, H. D., & Zilles, K. (1991). Quantitative development of brain and brain structures in birds (Galliformes und Passeriformis) compared to that in mammals (insectivores and primates). Brain Behavior Evolution, 37, 125–143.CrossRef
go back to reference Reiner, A., Perkel, D. J., Bruce, L. L., Butler, A. B., Csillag, A., Kuenzel, W., et al. (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. The Journal of Comparative Neurology, 473, 377–414.PubMedCrossRef Reiner, A., Perkel, D. J., Bruce, L. L., Butler, A. B., Csillag, A., Kuenzel, W., et al. (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. The Journal of Comparative Neurology, 473, 377–414.PubMedCrossRef
go back to reference Rose, J., & Colombo, M. (2005). Neural correlates of executive control in the avian brain. PLoS Biology, 3, e190.PubMedCrossRef Rose, J., & Colombo, M. (2005). Neural correlates of executive control in the avian brain. PLoS Biology, 3, e190.PubMedCrossRef
go back to reference Rose, J., Güntürkün, O., Kirsch, J. (2009). Evolution of association pallial areas: in birds. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia in Neuroscience (pp. 1215–1219). Springer: Berlin. Rose, J., Güntürkün, O., Kirsch, J. (2009). Evolution of association pallial areas: in birds. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia in Neuroscience (pp. 1215–1219). Springer: Berlin.
go back to reference Sawaguchi, T. (2001). The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neuroscience Research, 41, 115–128.PubMedCrossRef Sawaguchi, T. (2001). The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neuroscience Research, 41, 115–128.PubMedCrossRef
go back to reference Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947–950.PubMedCrossRef Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947–950.PubMedCrossRef
go back to reference Schnabel, R., Metzger, M., Jiang, S., Hemmings, H. C., Jr, Greengard, P., & Braun, K. (1997). Localization of dopamine D1 receptors and dopaminoceptive neurons in the chick forebrain. The Journal of Comparative Neurology, 388, 146–168.PubMedCrossRef Schnabel, R., Metzger, M., Jiang, S., Hemmings, H. C., Jr, Greengard, P., & Braun, K. (1997). Localization of dopamine D1 receptors and dopaminoceptive neurons in the chick forebrain. The Journal of Comparative Neurology, 388, 146–168.PubMedCrossRef
go back to reference Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.PubMed Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.PubMed
go back to reference Seamans, J. K., Durstewitz, D., Christie, B.R., Stevens, C.F., Sejnowski, T.J. (2001). Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proceedings of the National Academy of Sciences, USA, 98, 301–306. Seamans, J. K., Durstewitz, D., Christie, B.R., Stevens, C.F., Sejnowski, T.J. (2001). Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proceedings of the National Academy of Sciences, USA, 98, 301–306.
go back to reference Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 1–58.PubMedCrossRef Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 1–58.PubMedCrossRef
go back to reference Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. American Naturalist, 172, S63–S71.PubMedCrossRef Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. American Naturalist, 172, S63–S71.PubMedCrossRef
go back to reference Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences, USA, 102, 5460–5465. Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences, USA, 102, 5460–5465.
go back to reference Stephan, H., Baron, G., Frahm, H. D. (1988). Comparative size of brains and brain components. In: H. D. Steklis, J. Erwin (Eds.), Comparative Primate Biology (pp. 1–38). New York: Alan R. Liss. Stephan, H., Baron, G., Frahm, H. D. (1988). Comparative size of brains and brain components. In: H. D. Steklis, J. Erwin (Eds.), Comparative Primate Biology (pp. 1–38). New York: Alan R. Liss.
go back to reference Taylor, A. H., Hunt, G. R., Holzhaider, J. C., & Gray, R. D. (2007). Spontaneous metatool us by New Caledonian crows. Current Biology, 17, 1504–1507.PubMedCrossRef Taylor, A. H., Hunt, G. R., Holzhaider, J. C., & Gray, R. D. (2007). Spontaneous metatool us by New Caledonian crows. Current Biology, 17, 1504–1507.PubMedCrossRef
go back to reference Taylor, A. H., Hunt, G. R., Medina, F. S., Gray, R. D. (2009). Do New Caledonian crows solve physical problems through causal reasoning? Proceedings of the Royal Society of London, Series B: Biological Sciences, 276, 247–254. Taylor, A. H., Hunt, G. R., Medina, F. S., Gray, R. D. (2009). Do New Caledonian crows solve physical problems through causal reasoning? Proceedings of the Royal Society of London, Series B: Biological Sciences, 276, 247–254.
go back to reference Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10, 376–384.PubMedCrossRef Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10, 376–384.PubMedCrossRef
go back to reference Wake, D. B., Wake, M. H., & Specht, C. D. (2011). Homoplasy: From detecting pattern to determining process and mechanism of evolution. Science, 331, 1032–1035.PubMedCrossRef Wake, D. B., Wake, M. H., & Specht, C. D. (2011). Homoplasy: From detecting pattern to determining process and mechanism of evolution. Science, 331, 1032–1035.PubMedCrossRef
go back to reference Watanabe, M., Kodama, T., & Hikosaka, K. (1997). Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. Journal of Neurophysiology, 78, 2795–2798.PubMed Watanabe, M., Kodama, T., & Hikosaka, K. (1997). Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. Journal of Neurophysiology, 78, 2795–2798.PubMed
go back to reference Weir, A. A. S., Chappell, J., & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science, 297, 981.PubMedCrossRef Weir, A. A. S., Chappell, J., & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science, 297, 981.PubMedCrossRef
go back to reference Wynne, B., & Güntürkün, O. (1995). The dopaminergic innervation of the forebrain of the pigeon (Columba livia): A study with antibodies against tyrosine hydroxylase and dopamine. The Journal of Comparative Neurology, 358, 1–19.CrossRef Wynne, B., & Güntürkün, O. (1995). The dopaminergic innervation of the forebrain of the pigeon (Columba livia): A study with antibodies against tyrosine hydroxylase and dopamine. The Journal of Comparative Neurology, 358, 1–19.CrossRef
go back to reference Yamazaki, Y., Aust, U., Huber, L., & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human” concept. Cognition, 104, 315–344.PubMedCrossRef Yamazaki, Y., Aust, U., Huber, L., & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human” concept. Cognition, 104, 315–344.PubMedCrossRef
Metagegevens
Titel
The convergent evolution of neural substrates for cognition
Auteur
Onur Güntürkün
Publicatiedatum
01-03-2012
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2012
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-011-0377-9

Andere artikelen Uitgave 2/2012

Psychological Research 2/2012 Naar de uitgave