Skip to main content
Top
Gepubliceerd in:

20-01-2022 | Original Article

Sustained visual attention improves visuomotor timing

Auteurs: Yingyu Huang, Shengqi Zhong, Liying Zhan, Mi Sun, Xiang Wu

Gepubliceerd in: Psychological Research | Uitgave 7/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Relative to audition, vision is considered much less trustworthy in sensorimotor timing such as synchronizing finger movements with a temporally regular sequence. Visuomotor timing requires maintaining attention over time, whereas the sustained visual attention may not be well held in conventional visuomotor timing task settings where flashing visual stimuli consisted of a briefly presented flash and a long blank period. In the present study, the potential attentional lapses in time due to the disappearance of the flash were carefully controlled in Experiment 1 by changing the color of the flash instead of its disappearance, or in Experiment 2 by adding an additional continuously presented fixation point serving as an external attentional cue when the flash disappeared. Improvement of visuomotor timing performance was found in both experiments. The finding suggests a role of enhanced sustained visual attention in improving visuomotor timing, by which vision could also be a trustworthy modality for processing temporal information in sensorimotor interactions.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Bartlett, N. R., & Bartlett, S. C. (1959). Synchronization of a motor response with an anticipated sensory event. Psychological Review, 66(4), 203–218.PubMedCrossRef Bartlett, N. R., & Bartlett, S. C. (1959). Synchronization of a motor response with an anticipated sensory event. Psychological Review, 66(4), 203–218.PubMedCrossRef
go back to reference Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31(10), 1–21.CrossRef Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31(10), 1–21.CrossRef
go back to reference Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention, Perception & Psychophysics, 75(5), 790–811.CrossRef Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention, Perception & Psychophysics, 75(5), 790–811.CrossRef
go back to reference Chen, Y., Repp, B. H., & Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: Comparisons between auditory and visual pacing and feedback conditions. Human Movement Science, 21(4), 515–532.PubMedCrossRef Chen, Y., Repp, B. H., & Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: Comparisons between auditory and visual pacing and feedback conditions. Human Movement Science, 21(4), 515–532.PubMedCrossRef
go back to reference Colley, I. D., Varlet, M., MacRitchie, J., & Keller, P. E. (2018). The influence of visual cues on temporal anticipation and movement synchronization with musical sequences. Acta Psychologica, 191, 190–200.PubMedCrossRef Colley, I. D., Varlet, M., MacRitchie, J., & Keller, P. E. (2018). The influence of visual cues on temporal anticipation and movement synchronization with musical sequences. Acta Psychologica, 191, 190–200.PubMedCrossRef
go back to reference Dalla Bella, S., & Sowiński, J. (2015). Uncovering beat deafness: Detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks. Journal of Visualized Experiments, 97, 51761. Dalla Bella, S., & Sowiński, J. (2015). Uncovering beat deafness: Detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks. Journal of Visualized Experiments, 97, 51761.
go back to reference Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23, 2712–2723.PubMedCrossRef Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23, 2712–2723.PubMedCrossRef
go back to reference Esterman, M., & Rothlein, D. (2019). Models of sustained attention. Current Opinion in Psychology, 29, 174–180.PubMedCrossRef Esterman, M., & Rothlein, D. (2019). Models of sustained attention. Current Opinion in Psychology, 29, 174–180.PubMedCrossRef
go back to reference Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.PubMedCrossRef Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.PubMedCrossRef
go back to reference Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge University Press.CrossRef Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge University Press.CrossRef
go back to reference Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396, 70–91.PubMedPubMedCentralCrossRef Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396, 70–91.PubMedPubMedCentralCrossRef
go back to reference Gan, L., Huang, Y., Zhou, L., Qian, C., & Wu, X. (2015). Synchronization to a bouncing ball with a realistic motion trajectory. Scientific Reports, 5, 11974.PubMedPubMedCentralCrossRef Gan, L., Huang, Y., Zhou, L., Qian, C., & Wu, X. (2015). Synchronization to a bouncing ball with a realistic motion trajectory. Scientific Reports, 5, 11974.PubMedPubMedCentralCrossRef
go back to reference Grahn, J. A., Henry, M. J., & McAuley, J. D. (2011). FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa. NeuroImage, 54(2), 1231–1243.PubMedCrossRef Grahn, J. A., Henry, M. J., & McAuley, J. D. (2011). FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa. NeuroImage, 54(2), 1231–1243.PubMedCrossRef
go back to reference Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception. Journal of Neuroscience, 29(23), 7540–7548.PubMedCrossRef Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception. Journal of Neuroscience, 29(23), 7540–7548.PubMedCrossRef
go back to reference Gu, L., Huang, Y., & Wu, X. (2019). Advantage of audition over vision in a perceptual timing task but not in a sensorimotor timing task. Psychological Research, 84:2046-2056. Gu, L., Huang, Y., & Wu, X. (2019). Advantage of audition over vision in a perceptual timing task but not in a sensorimotor timing task. Psychological Research, 84:2046-2056.
go back to reference Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: Auditory encoding of visual temporal sequences. Psychological Science, 16(3), 228–235.PubMedCrossRef Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: Auditory encoding of visual temporal sequences. Psychological Science, 16(3), 228–235.PubMedCrossRef
go back to reference Holcombe, A. O. (2009). Seeing slow and seeing fast: Two limits on perception. Trends in Cognitive Sciences, 13(5), 216–221.PubMedCrossRef Holcombe, A. O. (2009). Seeing slow and seeing fast: Two limits on perception. Trends in Cognitive Sciences, 13(5), 216–221.PubMedCrossRef
go back to reference Hove, M. J., Fairhurst, M. T., Kotz, S. A., & Keller, P. E. (2013). Synchronizing with auditory and visual rhythms: An fMRI assessment of modality differences and modality appropriateness. NeuroImage, 67, 313–321.PubMedCrossRef Hove, M. J., Fairhurst, M. T., Kotz, S. A., & Keller, P. E. (2013). Synchronizing with auditory and visual rhythms: An fMRI assessment of modality differences and modality appropriateness. NeuroImage, 67, 313–321.PubMedCrossRef
go back to reference Hove, M. J., Spivey, M. J., & Krumhansl, C. L. (2010). Compatibility of motion facilitates visuomotor synchronization. Journal of Experimental Psychology Human Perception and Performance, 36(6), 1525–1534.PubMedCrossRef Hove, M. J., Spivey, M. J., & Krumhansl, C. L. (2010). Compatibility of motion facilitates visuomotor synchronization. Journal of Experimental Psychology Human Perception and Performance, 36(6), 1525–1534.PubMedCrossRef
go back to reference Iversen, J. R., & Balasubramaniam, R. (2016). Synchronization and temporal processing. Current Opinion in Behavioral Sciences, 8, 175–180.CrossRef Iversen, J. R., & Balasubramaniam, R. (2016). Synchronization and temporal processing. Current Opinion in Behavioral Sciences, 8, 175–180.CrossRef
go back to reference Iversen, J. R., Patel, A. D., Nicodemus, B., & Emmorey, K. (2015). Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition, 134, 232–244.PubMedCrossRef Iversen, J. R., Patel, A. D., Nicodemus, B., & Emmorey, K. (2015). Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition, 134, 232–244.PubMedCrossRef
go back to reference Jacoby, N., Tishby, N., Repp, B. H., Ahissar, M., & Keller, P. E. (2015). Parameter estimation of linear sensorimotor synchronization models: Phase correction, period correction, and ensemble synchronization. Timing & Time Perception, 3(1–2), 52–87.CrossRef Jacoby, N., Tishby, N., Repp, B. H., Ahissar, M., & Keller, P. E. (2015). Parameter estimation of linear sensorimotor synchronization models: Phase correction, period correction, and ensemble synchronization. Timing & Time Perception, 3(1–2), 52–87.CrossRef
go back to reference Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex, 27, 1831–1840.PubMed Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex, 27, 1831–1840.PubMed
go back to reference Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.PubMedPubMedCentralCrossRef Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.PubMedPubMedCentralCrossRef
go back to reference Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139, 870–900.PubMedCrossRef Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139, 870–900.PubMedCrossRef
go back to reference Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159.CrossRef Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159.CrossRef
go back to reference Mu, Y., Huang, Y., Ji, C., Gu, L., & Wu, X. (2018). Auditory over visual advantage of sensorimotor synchronization in 6- to 7-year-old children but not in 12- to 15-year-old children and adults. Journal of Experimental Psychology. Human Perception and Performance, 44(5), 818–826.PubMedCrossRef Mu, Y., Huang, Y., Ji, C., Gu, L., & Wu, X. (2018). Auditory over visual advantage of sensorimotor synchronization in 6- to 7-year-old children but not in 12- to 15-year-old children and adults. Journal of Experimental Psychology. Human Perception and Performance, 44(5), 818–826.PubMedCrossRef
go back to reference O’Connell, R. G., Dockree, P. M., Robertson, I. H., Bellgrove, M. A., Foxe, J. J., & Kelly, S. P. (2009). Uncovering the neural signature of lapsing attention: Electrophysiological signals predict errors up to 20 s before they occur. Journal of Neuroscience, 29, 8604–8611.PubMedCrossRef O’Connell, R. G., Dockree, P. M., Robertson, I. H., Bellgrove, M. A., Foxe, J. J., & Kelly, S. P. (2009). Uncovering the neural signature of lapsing attention: Electrophysiological signals predict errors up to 20 s before they occur. Journal of Neuroscience, 29, 8604–8611.PubMedCrossRef
go back to reference Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19(10), 827–830.PubMedCrossRef Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19(10), 827–830.PubMedCrossRef
go back to reference Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163(2), 226–238.PubMedCrossRef Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163(2), 226–238.PubMedCrossRef
go back to reference Povel, D.-J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2(4), 411–440.CrossRef Povel, D.-J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2(4), 411–440.CrossRef
go back to reference Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969–992.CrossRef Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969–992.CrossRef
go back to reference Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: New evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology. Human Perception and Performance, 28(5), 1085–1099.PubMedCrossRef Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: New evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology. Human Perception and Performance, 28(5), 1085–1099.PubMedCrossRef
go back to reference Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychological Research Psychologische Forschung, 68(4), 252–270.PubMedCrossRef Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychological Research Psychologische Forschung, 68(4), 252–270.PubMedCrossRef
go back to reference Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452.CrossRef Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452.CrossRef
go back to reference Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146–160.PubMedCrossRef Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146–160.PubMedCrossRef
go back to reference Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31(10), 3805–3812.PubMedCrossRef Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31(10), 3805–3812.PubMedCrossRef
go back to reference Thaut, M. H., Kenyon, G. P., Schauer, M. L., & McIntosh, G. C. (1999). The connection between rhythmicity and brain function. IEEE Engineering in Medicine and Biology Magazine: THe Quarterly Magazine of the Engineering in Medicine & Biology Society, 18(2), 101–108.CrossRef Thaut, M. H., Kenyon, G. P., Schauer, M. L., & McIntosh, G. C. (1999). The connection between rhythmicity and brain function. IEEE Engineering in Medicine and Biology Magazine: THe Quarterly Magazine of the Engineering in Medicine & Biology Society, 18(2), 101–108.CrossRef
go back to reference Varlet, M., Coey, C. A., Schmidt, R. C., Marin, L., Bardy, B. G., & Richardson, M. J. (2014). Influence of stimulus velocity profile on rhythmic visuomotor coordination. Journal of Experimental Psychology. Human Perception and Performance, 40(5), 1849–1860.PubMedCrossRef Varlet, M., Coey, C. A., Schmidt, R. C., Marin, L., Bardy, B. G., & Richardson, M. J. (2014). Influence of stimulus velocity profile on rhythmic visuomotor coordination. Journal of Experimental Psychology. Human Perception and Performance, 40(5), 1849–1860.PubMedCrossRef
go back to reference Varlet, M., Marin, L., Issartel, J., Schmidt, R. C., & Bardy, B. G. (2012). Continuity of visual and auditory rhythms influences sensorimotor coordination. PLoS One, 7(9), e44082.PubMedPubMedCentralCrossRef Varlet, M., Marin, L., Issartel, J., Schmidt, R. C., & Bardy, B. G. (2012). Continuity of visual and auditory rhythms influences sensorimotor coordination. PLoS One, 7(9), e44082.PubMedPubMedCentralCrossRef
go back to reference Versaci, L., & Laje, R. (2021). Time-oriented attention improves accuracy in a paced finger-tapping task. European Journal of Neuroscience, 54(1), 4212–4229.CrossRef Versaci, L., & Laje, R. (2021). Time-oriented attention improves accuracy in a paced finger-tapping task. European Journal of Neuroscience, 54(1), 4212–4229.CrossRef
go back to reference Vorberg, D., & Wing, A. (1996). Modeling variability and dependence in timing. In H. Heuer, & S. W. Keele (Eds.). Handbook of perception and action (Vol. 2, pp. 181–262). London: Academic Press. Vorberg, D., & Wing, A. (1996). Modeling variability and dependence in timing. In H. Heuer, & S. W. Keele (Eds.). Handbook of perception and action (Vol. 2, pp. 181–262). London: Academic Press.
go back to reference Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.PubMedCrossRef Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.PubMedCrossRef
go back to reference Zelic, G., Varlet, M., Kim, J., & Davis, C. (2016). Influence of pacer continuity on continuous and discontinuous visuo-motor synchronisation. Acta Psychologica, 169, 61–70.PubMedCrossRef Zelic, G., Varlet, M., Kim, J., & Davis, C. (2016). Influence of pacer continuity on continuous and discontinuous visuo-motor synchronisation. Acta Psychologica, 169, 61–70.PubMedCrossRef
Metagegevens
Titel
Sustained visual attention improves visuomotor timing
Auteurs
Yingyu Huang
Shengqi Zhong
Liying Zhan
Mi Sun
Xiang Wu
Publicatiedatum
20-01-2022
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 7/2022
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-021-01629-9