Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2021

02-12-2019 | Original Article

Multisensory integration and behavioral stability

Auteurs: Charlotte Roy, Simone Dalla Bella, Simon Pla, Julien Lagarde

Gepubliceerd in: Psychological Research | Uitgave 2/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Information coming from multiple senses, as compared to a single one, typically enhances our performance. The multisensory improvement has been extensively examined in perception studies, as well as in tasks involving a motor response like a simple reaction time. However, how this effect extends to more complex behavior, typically involving the coordination of movements, such as bimanual coordination or walking, is still unclear. A critical element in achieving motor coordination in complex behavior is its stability. Reaching a stable state in the coordination pattern allows to sustain complex behavior over time (e.g., without interruption or negative consequences, like falling). This study focuses on the relation between stability in the coordination of movement patterns, like walking, and multisensory improvement. Participants walk with unimodal and audio-tactile metronomes presented either at their preferred rate or at a slower walking rate, the instruction being to synchronize their steps to the metronomes. Walking at a slower rate makes gait more variable than walking at the preferred rate. Interestingly however, the multimodal stimuli enhance the stability of motor coordination but only in the slower condition. Thus, the reduced stability of the coordination pattern (at a slower gait rate) prompts the sensorimotor system to capitalize on multimodal stimulation. These findings provide evidence of a new link between multisensory improvement and behavioral stability, in the context of ecological sensorimotor task.
Literatuur
go back to reference Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale: Erlbaum Associates. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale: Erlbaum Associates.
go back to reference Dakos, V., Van Nes, E. H., D’Odorico, P., & Scheffer, M. (2012). Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology, 93(2), 264–271.CrossRef Dakos, V., Van Nes, E. H., D’Odorico, P., & Scheffer, M. (2012). Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology, 93(2), 264–271.CrossRef
go back to reference Dalla Bella, S. (2018). Music and movement: Towards a translational approach. Neurophysiologie Clinique, 48(6), 377–386.CrossRef Dalla Bella, S. (2018). Music and movement: Towards a translational approach. Neurophysiologie Clinique, 48(6), 377–386.CrossRef
go back to reference Gardiner, C. W. (2003). Handbook of stochastic methods for physics, chemistry and the natural sciences. Berlin: Springer. Gardiner, C. W. (2003). Handbook of stochastic methods for physics, chemistry and the natural sciences. Berlin: Springer.
go back to reference Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347–356.CrossRef Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347–356.CrossRef
go back to reference Hershenson, M. (1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63(3), 289.CrossRef Hershenson, M. (1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63(3), 289.CrossRef
go back to reference Huys, R., Perdikis, D., & Jirsa, V. K. (2014). Functional architectures and structured flows on manifolds: A dynamical framework for motor behavior. Psychological Review, 121(3), 302.CrossRef Huys, R., Perdikis, D., & Jirsa, V. K. (2014). Functional architectures and structured flows on manifolds: A dynamical framework for motor behavior. Psychological Review, 121(3), 302.CrossRef
go back to reference Kelso, J. A. S. (1995). Dynamic patterns: the self-organization of brain and behavior. Cambridge: MIT Press. Kelso, J. A. S. (1995). Dynamic patterns: the self-organization of brain and behavior. Cambridge: MIT Press.
go back to reference Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119.CrossRef Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119.CrossRef
go back to reference Lovelace, C., Stein, B., & Wallace, M. (2003). An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. Cognitive Brain Research, 17(2), 447–453.CrossRef Lovelace, C., Stein, B., & Wallace, M. (2003). An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. Cognitive Brain Research, 17(2), 447–453.CrossRef
go back to reference Murray, M. M., Molholm, S., Michel, C. M., Heslenfeld, D. J., Ritter, W., Javitt, D. C., & Foxe, J. J. (2005). Grabbing your ear: Rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cerebral Cortex, 15(7), 963–974. https://doi.org/10.1093/cercor/bhh197.CrossRefPubMed Murray, M. M., Molholm, S., Michel, C. M., Heslenfeld, D. J., Ritter, W., Javitt, D. C., & Foxe, J. J. (2005). Grabbing your ear: Rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cerebral Cortex, 15(7), 963–974. https://​doi.​org/​10.​1093/​cercor/​bhh197.CrossRefPubMed
go back to reference Nelson, W., Hettinger, L., Cunningham, J., Brickman, B., Haas, M., & McKinley, R. (1998). Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Human Factors, 40(3), 452–460.CrossRef Nelson, W., Hettinger, L., Cunningham, J., Brickman, B., Haas, M., & McKinley, R. (1998). Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Human Factors, 40(3), 452–460.CrossRef
go back to reference Schöner, G., & Kelso, J. A. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513–1520.CrossRef Schöner, G., & Kelso, J. A. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513–1520.CrossRef
go back to reference Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge: MIT Press. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge: MIT Press.
go back to reference Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Boca Raton: CRC Press.CrossRef Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Boca Raton: CRC Press.CrossRef
go back to reference Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.CrossRef Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.CrossRef
Metagegevens
Titel
Multisensory integration and behavioral stability
Auteurs
Charlotte Roy
Simone Dalla Bella
Simon Pla
Julien Lagarde
Publicatiedatum
02-12-2019
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 2/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-019-01273-4

Andere artikelen Uitgave 2/2021

Psychological Research 2/2021 Naar de uitgave