Skip to main content
Log in

Binding of movement, sound and touch: multimodal coordination dynamics

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Very little is known about the coordination of movement in combination with stimuli such as sound and touch. The present research investigates the hypothesis that both the type of action (e.g., a flexion or extension movement) and the sensory modality (e.g., auditory or tactile) determine the stability of multimodal coordination. We performed a parametric study in which the ability to synchronize movement, touch and sound was explored over a broad range of stimulus frequencies or rates. As expected, synchronization of finger movement with external auditory and tactile stimuli was successfully established and maintained across all frequencies. In the key experimental conditions, participants were instructed to synchronize peak flexion of the index finger with touch and peak extension with sound (and vice-versa). In this situation, tactile and auditory stimuli were delivered counter-phase to each other. Two key effects were observed. First, switching between multimodal coordination patterns occurred, with transitions selecting one multimodal pattern (flexion with sound and extension with touch) more often than its partner. This finding indicates that the stability of multimodal coordination is influenced by both the type of action and the stimulus modality. Second, at higher rates, transitions from coherent to incoherent phase relations between touch, movement and sound occurred, attesting to the breakdown of multimodal coordination. Because timing errors in multimodal coordination were systematically altered when compared to unimodal control conditions we are led to consider the role played by time delays in multimodal coordination dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The Kuiper test detects whether the observed distribution differs significantly from randomness. The null hypothesis that the observed distribution is uniform is tested against any alternative, including multi-peaked distributions with not necessarily equally spaced peaks. The Kuiper test has been recently applied to detect transient synchronization and desynchronization of coupled oscillators (Tass 2004).

References

  • Aschersleben G (2002) Temporal control of movements in sensorimotor synchronization. Brain and Cogn 48:66–79

    Article  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic, London

    Google Scholar 

  • Beek PJ (1989) Timing and phase locking in cascade juggling. Ecol Psychol 1:55–96

    Article  Google Scholar 

  • Beek PJ, Peper CE, Daffertshofer A (2002) Modeling rhythmic interlimb coordination: beyond the Haken-Kelso-Bunz model. Brain Cogn 48:149–65

    Article  PubMed  CAS  Google Scholar 

  • Bernstein IH (1970) Can we see and hear at the same time? Some recent studies of intersensory facilitation of reaction time. Acta Psychol 33:21–35

    Article  CAS  Google Scholar 

  • Beuter A, Larocque D, Glass L (1989) Complex oscillations in a human motor system. J Mot Behav 21:277–289

    PubMed  CAS  Google Scholar 

  • Bresciani JP, Ernst MO, Drewing K, Bouyer G, Maury V, Kheddar A (2005) Feeling what you hear: auditory signals can modulate tactile tap perception. Exp Brain Res 162:172–180

    Article  PubMed  Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends in Cog Sci 5:26–36

    Article  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101:9849–9854

    Article  PubMed  CAS  Google Scholar 

  • Bushara KO, Hanakawa T, Toma K, Kansaku K, Hallet M (2003) Neural correlates of cross- modal binding. Natur Neurosci 6:190–195

    Article  CAS  Google Scholar 

  • Byblow WD, Carson RG, Goodman D (1994) Expressions of asymmetries and anchoring in bimanual coordination. Hum Mov Sci 13:3–28

    Article  Google Scholar 

  • Calvert GA (2001) Crossmodal Processing in the Human Brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123

    Article  PubMed  CAS  Google Scholar 

  • Calvert GA, Spence C, Stein BE (2004) Handbook of multisensory processes. MIT Press, Cambridge

    Google Scholar 

  • Carson RG (1995) The dynamics of isometric bimanual coordination. Exp Brain Res 105:465–476

    PubMed  CAS  Google Scholar 

  • Carson RG (1996) Neuromuscular-skeletal constraints upon the dynamics of perception-action coupling. Exp Brain Res 110:99–110

    Article  PubMed  CAS  Google Scholar 

  • Carson RG (2004) Governing coordination: why do muscles matter? In: Jirsa VK, Kelso JAS (eds) Coordination dynamics: issues and trends, vol 1. Springer series in Understanding Complex Systems, Springer, Berlin Heidelberg New York, pp 141–154

  • Carson RG, Kelso JAS (2004) Governing coordination: behavioral principles and neural correlates. Exp Brain Res 154:267–274

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Riek S (1998) Influence of joint position on the dynamics of perception-action coupling. Exp Brain Res 121:103–114

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ding M, Kelso JAS (1997) Long memory processes (1/fα type) in human coordination. Phys Rev Lett 79:4501–4504

    Article  CAS  Google Scholar 

  • Chen Y, Ding M, Kelso JAS (2003) Task-related power and coherence changes in neuromagnetic activity during visuomotor coordination. Exp Brain Res 148:105–116

    Article  PubMed  Google Scholar 

  • Cheyne D, Roberts LE, Gaetz W, Bosnyak D, Nahmias C, Christoforou N, Weinberg H (1998) Somatotopic organization of human somatosensory cortex: a comparison of EEG, MEG and FMRI methods. In: Koga Y, Narata K, Hirata K (eds) Brain topography today. Elsevier, Amsterdam, pp 76–81

    Google Scholar 

  • Daffertshoffer A, Peper CE, Beek PJ (2000) Spectral analysis of event-related electroencephalographic signals. Phys Lett A 266:290–302

    Article  Google Scholar 

  • DeGuzman GC, Kelso JAS (1991) Multifrequency behavioral patterns and the phase attractive circle map. Biol Cyb 64:485–495

    Article  CAS  Google Scholar 

  • DeGuzman GC, Kelso JAS (1992) The flexible dynamics of biological coordination: living in the niche between order and disorder. In: Mittenthal J, Baskin A (eds) Principles of organization in organisms. Santa Fe Institute studies in the science of complexity, vol 13. Addison-Wesley, Longman, pp 11–34

  • Dehner LR, Keniston LP, Clemo HR, Meredith MA (2004) Cross-modal circuitry between auditory and somatosensory areas of the cat anterior ectosylvian sulcal cortex: a ‘new’ inhibitory form of multisensory convergence. Cereb Cortex 14:387–403

    Article  PubMed  Google Scholar 

  • Dhamala M, Assisi CG, Jirsa VK, Kelso, JAS (2003) Multisensory integration displayed in the human EEG and FMRI is parametrized by frequency and time delays. [CDROM] Program No. 912.14. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC

  • Dhamala M, Jirsa VK, Ding M (2004) Enhancement of neural synchrony by time delay. Phys Rev Lett 92:1–4

    Google Scholar 

  • Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement of reaction time: effects of stimulus onset and intensity. Percept Psychophys 66:1388–1404

    PubMed  Google Scholar 

  • Driver J, Spence C (2000) Multisensory perception: beyond modularity and convergence. Curr Biol 10:R737–R735

    Article  Google Scholar 

  • Dunlap K (1910) Reactions to rhythmic stimuli, with attempt to synchronize. Psychol Rev 17:399–416

    Google Scholar 

  • Edelman GM (2004) Wider than the sky. Yale University Press, New Haven

    Google Scholar 

  • Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New York

    Google Scholar 

  • Engström DA, Kelso JAS, Holroyd T (1996) Reaction-anticipation transitions in human perception-action patterns. Hum Mov Sci 15:809–832

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–862

    Article  PubMed  Google Scholar 

  • Fink PW, Kelso JAS, Foo P, Jirsa VK (2000) Local and global stabilization of coordination by sensory information. Exp Brain Res 134:9–20

    Article  PubMed  CAS  Google Scholar 

  • Finney SA, Warren WH (2002) Delayed auditory feedback and rhythmic tapping: evidence for a critical interval shift. Percept Psychophys 64:896–908

    PubMed  Google Scholar 

  • Fogassi L, Gallese V (2004) Action as a binding key to multisensory integration. In: Calvert GA, Spence C, Stein BE (eds) The handboock of multisensory processes. MIT Press, Cambridge, pp 425–441

    Google Scholar 

  • Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2000) Multisensory auditory-somatosensory interactions in early cortical processing revealed by high density electrical mapping. Cogn Brain Res 10:77–83

    Article  CAS  Google Scholar 

  • Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88:540–543

    PubMed  Google Scholar 

  • Frank TD, Dafferstoffer A, Peper CE, Beek PJ, Haken H (2000) Toward a comprehensive theory of brain activity: coupled oscillators systems under external forces. Physica D 144:62–86

    Article  MathSciNet  Google Scholar 

  • Freeman WJ, Holmes MD (2005) Metastability, instability and state transition in neocortex. Neural Networks, 18:497–504

    Article  PubMed  Google Scholar 

  • Friston KJ (1997) Transients, metastability and neural dynamics. NeuroImage 5:164–171

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ (2000) The labile brain. I. Transients and spatio-temporal receptive fields. PhilosTrans R Soc Lond B Biol Sci 355:253–265

    Article  CAS  Google Scholar 

  • Fu KM, Johnston TA, Shah AS, Arnold L, Smiley J, Hackett TA, Garraghty PE, Schroeder CE (2003) Auditory cortical neurons respond to somatosensory stimulation. J Neurosci 23:7510–7515

    PubMed  CAS  Google Scholar 

  • Fuchs A, Jirsa VK (2000) The HKB model revisited: how varying the degree of symmetry controls dynamics. Hum Mov Sci 19:425–444

    Article  Google Scholar 

  • Fuchs A, Kelso JAS, Haken H (1992) Phase transitions in the human brain: spatial mode dynamics. Int J Bif Chaos 2:917–939

    Article  Google Scholar 

  • Fuchs A, Jirsa VK, Kelso JAS (2000a) Theory of the relation between human brain activity (MEG) and hand movements. Neuroimage 11:359–369

    Article  CAS  Google Scholar 

  • Fuchs A, Mayville J, Cheyne D, Weinberg H, Deecke L, Kelso JAS (2000b) Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12:71–84

    Article  CAS  Google Scholar 

  • Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nature Neurosci 7:773–778

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Glass L, Beuter A, Laroque D (1988) Time delays, oscillations, and chaos in physiological control systems. Math Biosci 90:111–125

    Article  Google Scholar 

  • Gobbelé R, Schürmann M, Forss N, Juottonen K, Buchner H, Hari R (2003) Activation of the human posterior parietal and temporal cortices during audiotactile interaction. Neuroimage 20:503–511

    Article  PubMed  Google Scholar 

  • Graziano MS, Gross CG (1995) The representation of extrapersonal space: a possible role for bimodal, visual-tactile neurons. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 1021–1034

    Google Scholar 

  • Graziano MS, Cooke DF, Taylor CS (2000) Coding the location of the arm by sight. Science 290:1782–1786

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer J, Holmes P (1990) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Guest S, Catmur C, Lloyd D, Spence C (2002) Audiotactile interactions in roughness perception. Exp Brain Res 147:161–171

    Article  Google Scholar 

  • Haken H (1983) Advanced synergetics. Instability hierarchies of self-organizing systems and devices. Springer. Berlin Heidelberg New York

    Google Scholar 

  • Haken H (1996) Principles of brain functioning: a synergetic approach to brain activity, behavior and cognition. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human bimanual coordination. Biol Cybern 51: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Haken H, Peper CE, Beek PJ, Daffertshofer A (1996) A model for phase transitions in human hand movements during multifrequency tapping. Physica D 90:179–196

    Article  Google Scholar 

  • Hamalainen H, Kokoni J, Sams M, Reinikainen K, Naatanen R (1990) Human somatosensory evoked potentials to mechanical pulses and vibration: contributions of SI and SII somatosensory cortices to P50 and P100 components. Electroenceph Clin Neurophysiol 75:13–21

    Article  PubMed  CAS  Google Scholar 

  • Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293

    PubMed  CAS  Google Scholar 

  • Hummel F, Gerloff C (2005) Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. Cereb Cortex 15:970–978

    Google Scholar 

  • Ishida F, Sawada YE (2004) Human hand moves proactively to the external stimulus: an evolutional strategy for minimizing transient error. Phys Rev Lett 93:1681051–1681053

    Article  CAS  Google Scholar 

  • Jantzen KJ, Steinberg FL, Kelso JAS (2004) Brain networks underlying human timing behavior are influenced by prior context. Proc Natl Acad Sci 101:6815–6820

    Article  PubMed  CAS  Google Scholar 

  • Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 100:495–502

    PubMed  CAS  Google Scholar 

  • Jeka JJ, Schöner G, Dijkstra T, Ribeiro P, Lackner JR (1997) Coupling of fingertip somatosensory information to head and body sway. Exp Brain Res 113:475–483

    PubMed  CAS  Google Scholar 

  • Jirsa VK, Kelso JAS (2000) Spatiotemporal pattern formation in continuous systems with heterogeneous connection topologies. Phys Rev E 62:8462–8465

    Article  CAS  Google Scholar 

  • Jirsa VK, Kelso JAS (eds) (2004a) Coordination dynamics: issues and trends, vol 1. Springer series in Understanding Complex Systems. Springer, Berlin Heidelberg New York

  • Jirsa VK, Kelso JAS (2004b) Integration and segregation of perceptual and motor behavior. In: Jirsa VK, Kelso JAS (eds) Coordination dynamics: issues and trends, vol 1. Springer series in understanding complex systems. Springer, Berlin Heidelberg New York, pp 243–259

  • Jirsa VK, Fink PW, Foo P, Kelso JAS (2000) Parametric stabilization of biological coordination: a theoretical model. J Biol Phys 26:85–112

    Article  Google Scholar 

  • Jousmäki V, Hari R (1998) Parchment-skin illusion: sound-biased touch. Curr Biol 8:R190

    Article  PubMed  Google Scholar 

  • Katsumata H, Zatiorsky V, Sternad D (2003) Control of ball-racket interactions in the rhythmic propulsion of elastic and non-elastic balls. Exp Brain Res 149:17–29

    PubMed  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 15:R1000–R1004

    Google Scholar 

  • Kelso JAS (1991) Behavioral and neural pattern generation: The concept of neurobehavioral dynamical system (NBDS). In: Koepchen HP (ed) Cardiorespiratory and Motor Coordination. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kelso JAS (1992) Coordination dynamics of human brain and behavior. Springer Proc in Physics 69:223–234

    Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS (2001) How the brain changes its mind: metastable coordination dynamics. In: The emergence of the mind. Fondazione Carlo Erba, Milano pp 93–101

  • Kelso JAS, DeGuzman GC (1988) Order in time: how cooperation between the hands informs the design of the brain. In: Haken H (ed) Neural and synergetic computers. Springer, Berlin Heidelberg New York, pp 180–196

    Google Scholar 

  • Kelso JAS, Scholz JP, Schöner G (1986) Non equilibrium phase transitions in coordinated biological motion: critical fluctuations. Phys Lett A 118:279–284

    Article  Google Scholar 

  • Kelso JAS, Schöner G, Scholz JP, Haken H (1987) Phase-locked modes, phase transitions and component oscillators in biological motion. Phys Scripta 35:79–87

    Google Scholar 

  • Kelso JAS, Delcolle JD, Schöner G (1990) Action-perception as a pattern formation process. In: Jeannerod M (ed) Attention and performance XIII. Erlbaum, Hillsdale, pp 139–169

    Google Scholar 

  • Kelso JAS, DeGuzman GC, Holroyd T (1991) Synergetic dynamics of biological coordination with special reference to phase attraction and intermittency. In: Haken H, Koepchen HP (eds) Rhythms in Physiological Systems, vol. 55. Springer Series in Synergetics. Springer, Berlin Heidelberg New York, pp 195–213

    Google Scholar 

  • Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC, Ding M, Fuchs A, Holroyd T (1992) A phase transition in human brain and behavior. Phys Lett A 169:134–144

    Article  Google Scholar 

  • Kelso JAS, Fink PW, DeLaplain CR, Carson RG (2001) Haptic information stabilizes and destabilizes coordination dynamics. Proc R Soc Lond B 268:1207–1213

    Article  CAS  Google Scholar 

  • Koch C (2004) The quest for consciousness. CO Roberts & Co, Englewood

    Google Scholar 

  • Kuiper NH (1960) Tests concerning random points on a circle. Proc K Ned Akad Wet, Ser A Math Sci 63:38–47

    Google Scholar 

  • Lam K, Kakigi R, Kaneoke Y, Naka D, Maeda K, Suzuki H (1999) Effects of visual and auditory stimulation on somatosensory evoked magnetic fields. Clin Neurophysiol 110:295–304

    Article  PubMed  CAS  Google Scholar 

  • Langenberg U, Hefter H, Kessler KR, Cooke JD (1998) Sinusoidal forearm tracking with delayed visual feedback. I. Exp Brain Res 118:161–170

    Article  PubMed  CAS  Google Scholar 

  • Lewkowicz DJ (2000) The development of intersensory temporal perception: an epigenetic systems/ limitations view. Psychol Bull 126:281–308

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DM, Shore DI, Spence C, Calvert GA (2003) Multisensory representation of limb position in human premotor cortex. Nat Neurosci 6:17–18

    Article  PubMed  CAS  Google Scholar 

  • Lütkenhöner B, Lammertmann C, Simoes C, Hari R (2002) Magnetoencephalographic correlates of audiotactile interaction. NeuroImage 15:509–522

    Article  PubMed  Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic Press, London

    Google Scholar 

  • Mayville JM, Bressler SL, Fuchs A, Kelso JAS (1999) Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp Brain Res 127:371–381

    Article  PubMed  CAS  Google Scholar 

  • Mayville JM, Jantzen KJ, Fuchs A, Steinberg F, Kelso JAS (2002) Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Hum Brain Mapping 17:214–219

    Article  Google Scholar 

  • Meredith MA (2002) On the neural basis for multisensory convergence: a brief overview. Cogn Brain Res 14:31–40

    Article  Google Scholar 

  • Meredith MA, Stein BE (1983) Interactions among converging sensory inputs in the superior colliculus. Science 221: 389–391

    PubMed  CAS  Google Scholar 

  • Meredith MA, Stein BE (1986) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365:350–354

    Article  PubMed  CAS  Google Scholar 

  • Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7:3215–3229

    PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99:10948–10953

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Weir DJ, Stein JF (1986) Manual tracking of visual targets by trained monkeys. Behav Brain Sci 20:185–201

    Article  CAS  Google Scholar 

  • Molhom S, Ritter W, Murray MM, Javitt DC, Schroder CE, Foxe JJ (2002) Multisensory audio-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Cog Brain Res 14:115–128

    Article  Google Scholar 

  • Murray EA, Mishkin M (1985) Amygdalectomy impairs crossmodal association in monkeys. Science 228:604–606

    PubMed  CAS  Google Scholar 

  • Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Schroeder CE, Foxe JJ (2005) Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb Cortex 15:963–974

    Article  PubMed  Google Scholar 

  • Nickerson RS (1973) Intersensory facilitation of reaction time: energy summation or preparation enhancement? Psychol Rev 80:489–509

    PubMed  CAS  Google Scholar 

  • Nunez PL, Wingeier BM, Silberstein B (2001) Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 13:125–164

    Article  PubMed  CAS  Google Scholar 

  • Peper L, Beek PJ, Van Wieringen PCW (1995) Frequency induced transitions in bimanual tapping. Biol Cybern 73:301–309

    PubMed  CAS  Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I. Evaluation of components. Electroenceph clin Neurophysiol 36:179–190

    Article  PubMed  CAS  Google Scholar 

  • Raab D (1962) Statistical facilitation of simple reaction time. Trans N Y Acad Sci 43:574–590

    Google Scholar 

  • Schmidt RC, Shaw BK, Turvey MT (1993) Coupling dynamics in interlimb coordination. J Exp Psychol Hum Percept Perform 19:397–415

    Article  PubMed  CAS  Google Scholar 

  • Schöner G, Kelso JAS (1988) A synergetic theory of environmentally specified and learned patterns of movement coordination. I. Relative phase dynamics. Biol Cybern 58:71–80

    Article  PubMed  Google Scholar 

  • Schöner G, Haken H, Kelso JAS (1986) A stochastic model of phase transitions in human hand movement. Biol Cybern 53:247–257

    Article  PubMed  Google Scholar 

  • Schöner G, Yiang WY, Kelso JAS (1990) A synergetic theory of quadrupedal gaits and gait transitions. J Theor Biol 142:359–391

    PubMed  Google Scholar 

  • Shore DI, Spry E, Spence C (2002) Confusing the mind by crossing the hands. Cogn Brain Res 14:153–163

    Article  Google Scholar 

  • Spence C, Nicholls ME, Gillespie N, Driver J (1998) Cross-modal links in exogenous covert spatial orienting between touch, audition, and vision. Percept Psychophys 60:544–557

    PubMed  CAS  Google Scholar 

  • Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123:124–135

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Stein BE, Huneycutt WS, Meredith MA (1988) Neurons and behavior: the same rules of multisensory integration apply. Brain Res 448:355–358

    Article  PubMed  CAS  Google Scholar 

  • Stins JF, Michaels CF (1999) Strategy differences in oscillatory tracking: stimulus – hand versus stimulus-manipulandum coupling. J Exp Psychol Hum Percept Perform 25:1793–1812

    Article  Google Scholar 

  • Swinnen SP, Walter CB, Lee TD, Serrien DJ (1993) Acquiring bimanual skills: contrasting forms of information feedback for interlimb decoupling. J Exp Psychol Learn Mem Cogn 19:1328–1344

    Article  PubMed  CAS  Google Scholar 

  • Tass PA (1995) Phase and frequency shifts of two nonlinearly coupled oscillators. Z Phys B 99:111–121

    Article  CAS  Google Scholar 

  • Tass PA (2004) Transmission of stimulus-locked responses in two coupled phase oscillators. Phys Rev E 69:051909

    Article  CAS  Google Scholar 

  • Tass PA, Kurths J, Rosenblum MG, Guasti G, Hefter H (1996) Delay- induced transitions in visually guided movements. Phys Rev E 54:R2224–R2227

    Article  CAS  Google Scholar 

  • Todd JW (1912) Reaction to multiple stimuli. Arch Psychol 25:1–65

    Google Scholar 

  • Tuller B, Kelso JAS (1989) Environmentally specified patterns of movement coordination in normal and split-brain subjects. Exp Brain Res 75:306–316

    Article  PubMed  CAS  Google Scholar 

  • Turvey MT (1990) Coordination. Am Psychol 45:938–953

    Article  PubMed  CAS  Google Scholar 

  • Turvey MT (2004) Impredicativity, dynamics, and the perception–action divide. In: Jirsa VK and Kelso JAS (eds) Coordination dynamics: issues and trends, vol 1. Springer series in Understanding Complex Systems. Springer, Berlin Heidelberg New York, pp 1–20

  • Turvey MT, Schmidt RC (1994) A low dimensional nonlinear dynamic governing interlimb rhythmic coordination. In: Swinnen SP et al (eds) Interlimb coordination: neural, dynamical and cognitive constraints. Academic Press, San Diego, pp 278–300

    Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–39

    Article  PubMed  CAS  Google Scholar 

  • Vercher JL, Gauthier GM (1992) Oculo-manual coordination control: ocular and manual tracking of visual targets with delayed visual feedback of the hand motion. Exp Brain Res 90:599–609

    Article  PubMed  CAS  Google Scholar 

  • Wallenstein GV, Kelso JAS, Bressler SL (1995) Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 84:626–634

    Article  Google Scholar 

  • Wimmers RH, Beek PJ, van Wieringen FCW (1992) Phase transitions in rhythmic tracking movements: a case of unilateral coupling. Hum Mov Sci 11:217–226

    Article  Google Scholar 

  • Woodrow H (1932) The effect of rate of sequence upon the accuracy of synchronization. J Exp Psychol 15:357–379

    Google Scholar 

  • Yeung MK, Strogatz SH (1999) Time delay in the Kuramoto model of coupled oscillators. Phys Rev Lett 82:648–651

    Article  CAS  Google Scholar 

  • Yuste R, MacLean JN, Smith J, Lansner A (2005) The cortex as a central pattern generator. Nat Rev Neurosci 6:477–483

    Article  PubMed  CAS  Google Scholar 

  • Zanone PG, Kelso JAS (1992) Evolution of behavioral attractors with learning: nonequilibrium phase transitions. J Exp Psychol Hum Percept Perform 18:403–421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Mental Health grants MH42900 and MH01386 to JASK. Julien Lagarde was supported by Enactive Interfaces, a network of excellence (IST contract #002114) of the Commission of the European Community during part of the writing of this work. We wish to thank Drs Gonzalo deGuzman, Viktor Jirsa, Collins Assisi, Mukesh Dhamala, Emmanuelle Tognoli and Olivier Oullier for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lagarde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagarde, J., Kelso, J. Binding of movement, sound and touch: multimodal coordination dynamics. Exp Brain Res 173, 673–688 (2006). https://doi.org/10.1007/s00221-006-0410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0410-1

Keywords

Navigation