Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2021

27-01-2020 | Original Article

Using visual and/or kinesthetic information to stabilize intrinsic bimanual coordination patterns is a function of movement frequency

Auteurs: Shaochen Huang, Breton Van Syoc, Ruonan Yang, Taylor Kuehn, Derek Smith, Qin Zhu

Gepubliceerd in: Psychological Research | Uitgave 2/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Coordination dynamics suggest that both in-phase and anti-phase movements are intrinsic and can be readily performed without practice. As movement frequency increases, individuals performing anti-phase movement inevitably switch to perform in-phase movement. However, due to different frames of reference used to define intrinsic coordination patterns in visual and kinesthetic domains, the perception of intrinsic coordination patterns could be ambiguous, which leads to the question whether the visually or kinesthetically perceived information is used to maintain the intrinsic coordination patterns. The current study explored how the consistency between visual and kinesthetic information would impact the performance and the associated metabolic energy consumption of intrinsic bimanual coordination patterns as movement frequency increased. Thirty participants were recruited and randomly assigned to one of three groups (“Info + Spatial +”, “Info + Spatial −”, and “Info-Spatial +”) to perform intrinsic bimanual coordination tasks using a computer-joystick system at low, high, and self-selected frequencies. The visual and kinesthetic information were manipulated to be either consistent or inconsistent by changing the spatial mapping between the motion of display and motion of joysticks. The results showed that the kinesthetic information was largely used to maintain the stability of intrinsic coordination patterns at high frequency, which could be an energy-conserving solution. However, spatial mapping alone seemed to be beneficial for keeping the visually perceived in-phase and anti-phase coordination patterns equally stable at low movement frequency, and spatially mapping the visual information to be consistent with kinesthetic information greatly enhanced the stability of anti-phase coordination. The dynamical use of visual and kinesthetic information for control of bimanual coordination is discussed.
Voetnoten
1
Participants saw two white dots moving rhythmically at the target relative phase, either in the same direction at the same time (in-phase), or in the opposite direction at the same time (anti-phase).
 
2
The feedback was given when the produced relative phase fell within the error bandwidth (i.e., ± 20°); the color of dots changed from white to green.
 
3
PTT20 is a valid measure of performance at the required relative phase that allows us to assess within-trial stability and eliminate confounds. The validity has been proved in numerous studies (e.g. Bingham et al., 2018; Zhu et al., 2017; Snapp-Childs, Wilson, & Bingham, 2015).
 
Literatuur
go back to reference American College of Sports Medicine. (2016). ACSM’s guidelines for exercise testing and prescription. Tenth edit: Lippincott Williams & Wilkins. American College of Sports Medicine. (2016). ACSM’s guidelines for exercise testing and prescription. Tenth edit: Lippincott Williams & Wilkins.
go back to reference Bingham, G. P. (2001). A perceptually driven dynamical model of rhythmic limb movement and bimanual coordination. In Proceedings of the 23rd Annual Conference of the Cognitive Science Society (pp. 75–79). Bingham, G. P. (2001). A perceptually driven dynamical model of rhythmic limb movement and bimanual coordination. In Proceedings of the 23rd Annual Conference of the Cognitive Science Society (pp. 75–79).
go back to reference Bingham, G. P. (2004a). A perceptually driven dynamical model of bimanual rhythmic movement (and phase perception). Ecological Psychology, 16(1), 45–53. Bingham, G. P. (2004a). A perceptually driven dynamical model of bimanual rhythmic movement (and phase perception). Ecological Psychology, 16(1), 45–53.
go back to reference Bingham, G. P. (2004b). Another timing variable composed of state variables: Phase perception and phase driven oscillators. Advances in psychology, 135, 421–442. Bingham, G. P. (2004b). Another timing variable composed of state variables: Phase perception and phase driven oscillators. Advances in psychology, 135, 421–442.
go back to reference Bingham, G. P., Snapp-Childs, W., & Zhu, Q. (2018). Information about relative phase in bimanual coordination is modality specific (not amodal), but kinesthesis and vision can teach one another. Human Movement Science, 60, 98–106.PubMed Bingham, G. P., Snapp-Childs, W., & Zhu, Q. (2018). Information about relative phase in bimanual coordination is modality specific (not amodal), but kinesthesis and vision can teach one another. Human Movement Science, 60, 98–106.PubMed
go back to reference Bingham, G. P., Zaal, F. T., Shull, J. A., & Collins, D. R. (2001). The effect of frequency on the visual perception of relative phase and phase variability of two oscillating objects. Experimental Brain Research, 136(4), 543–552.PubMed Bingham, G. P., Zaal, F. T., Shull, J. A., & Collins, D. R. (2001). The effect of frequency on the visual perception of relative phase and phase variability of two oscillating objects. Experimental Brain Research, 136(4), 543–552.PubMed
go back to reference Bogaerts, H., Buekers, M. J., Zaal, F. T., & Swinnen, S. P. (2003). When visuo-motor incongruence aids motor performance: The effect of perceiving motion structures during transformed visual feedback on bimanual coordination. Behavioural Brain Research, 138(1), 45–57.PubMed Bogaerts, H., Buekers, M. J., Zaal, F. T., & Swinnen, S. P. (2003). When visuo-motor incongruence aids motor performance: The effect of perceiving motion structures during transformed visual feedback on bimanual coordination. Behavioural Brain Research, 138(1), 45–57.PubMed
go back to reference Brandes, J., Rezvani, F., & Heed, T. (2017). Abstract spatial, but not body-related, visual information guides bimanual coordination. Scientific reports, 7(1), 16732.PubMedPubMedCentral Brandes, J., Rezvani, F., & Heed, T. (2017). Abstract spatial, but not body-related, visual information guides bimanual coordination. Scientific reports, 7(1), 16732.PubMedPubMedCentral
go back to reference Brookings, J. B., Wilson, G. F., & Swain, C. R. (1996). Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology, 42(3), 361–377.PubMed Brookings, J. B., Wilson, G. F., & Swain, C. R. (1996). Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology, 42(3), 361–377.PubMed
go back to reference Buekers, M. J., Bogaerts, H. P., Swinnen, S. P., & Helsen, W. F. (2000). The synchronization of human arm movements to external events. Neuroscience Letters, 290(3), 181–184.PubMed Buekers, M. J., Bogaerts, H. P., Swinnen, S. P., & Helsen, W. F. (2000). The synchronization of human arm movements to external events. Neuroscience Letters, 290(3), 181–184.PubMed
go back to reference Burton, D. A., Stokes, K., & Hall, G. M. (2004). Physiological effects of exercise. Continuing Education in Anaesthesia Critical Care & Pain, 4(6), 185–188. Burton, D. A., Stokes, K., & Hall, G. M. (2004). Physiological effects of exercise. Continuing Education in Anaesthesia Critical Care & Pain, 4(6), 185–188.
go back to reference Carroll, D., Turner, J. R., & Hellawell, J. C. (1986). Heart rate and oxygen consumption during active psychological challenge: The effects of level of difficulty. Psychophysiology, 23(2), 174–181.PubMed Carroll, D., Turner, J. R., & Hellawell, J. C. (1986). Heart rate and oxygen consumption during active psychological challenge: The effects of level of difficulty. Psychophysiology, 23(2), 174–181.PubMed
go back to reference Carroll, D., Turner, J. R., & Rogers, S. (1987). Heart rate and oxygen consumption during mental arithmetic, a video game, and graded static exercise. Psychophysiology, 24(1), 112–118.PubMed Carroll, D., Turner, J. R., & Rogers, S. (1987). Heart rate and oxygen consumption during mental arithmetic, a video game, and graded static exercise. Psychophysiology, 24(1), 112–118.PubMed
go back to reference Carson, R. G., Riek, S., Smethurst, C. J., Párraga, J. F. L., & Byblow, W. D. (2000). Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Experimental Brain Research, 131(2), 196–214.PubMed Carson, R. G., Riek, S., Smethurst, C. J., Párraga, J. F. L., & Byblow, W. D. (2000). Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Experimental Brain Research, 131(2), 196–214.PubMed
go back to reference Diedrich, F. J., & Warren, W. H., Jr. (1995). Why change gaits? Dynamics of the walk-run transition. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 183.PubMed Diedrich, F. J., & Warren, W. H., Jr. (1995). Why change gaits? Dynamics of the walk-run transition. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 183.PubMed
go back to reference Galna, B., & Sparrow, W. A. (2006). Learning to minimize energy costs and maximize mechanical work in a bimanual coordination task. Journal of Motor Behavior, 38(6), 411–422.PubMed Galna, B., & Sparrow, W. A. (2006). Learning to minimize energy costs and maximize mechanical work in a bimanual coordination task. Journal of Motor Behavior, 38(6), 411–422.PubMed
go back to reference Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347–356.PubMed Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347–356.PubMed
go back to reference Hoyt, D. F., & Taylor, C. R. (1981). Gait and the energetics of locomotion in horses. Nature, 292(5820), 239. Hoyt, D. F., & Taylor, C. R. (1981). Gait and the energetics of locomotion in horses. Nature, 292(5820), 239.
go back to reference Huang, S., Dai, B., & Zhu, Q. (2019). Advantage of early focus on visual information in bi-modal training of bimanual coordination. Multisensory research, 1(aop), 1–21. Huang, S., Dai, B., & Zhu, Q. (2019). Advantage of early focus on visual information in bi-modal training of bimanual coordination. Multisensory research, 1(aop), 1–21.
go back to reference Kelso, J. A. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 246(6), R1000–R1004. Kelso, J. A. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 246(6), R1000–R1004.
go back to reference Kelso, J. S., Holt, K. G., Kugler, P. N., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: II. Empirical lines of convergence. Advances in Psychology, 1, 49–70. Kelso, J. S., Holt, K. G., Kugler, P. N., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: II. Empirical lines of convergence. Advances in Psychology, 1, 49–70.
go back to reference Kelso, J. A. S., Scholz, J. P., & Schöner, G. (1986). Nonequilibrium phase transitions in coordinated biological motion: Critical fluctuations. Physics Letters A, 118(6), 279–284. Kelso, J. A. S., Scholz, J. P., & Schöner, G. (1986). Nonequilibrium phase transitions in coordinated biological motion: Critical fluctuations. Physics Letters A, 118(6), 279–284.
go back to reference Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009). Bimanual 1:1 with 90° continuous relative phase: Difficult or easy! Experimental Brain Research, 193(1), 129–136.PubMed Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009). Bimanual 1:1 with 90° continuous relative phase: Difficult or easy! Experimental Brain Research, 193(1), 129–136.PubMed
go back to reference Kovacs, A. J., & Shea, C. H. (2011). The learning of 90 continuous relative phase with and without Lissajous feedback: External and internally generated bimanual coordination. Acta Psychologica, 136(3), 311–320.PubMed Kovacs, A. J., & Shea, C. H. (2011). The learning of 90 continuous relative phase with and without Lissajous feedback: External and internally generated bimanual coordination. Acta Psychologica, 136(3), 311–320.PubMed
go back to reference Kugler, P. N., Kelso, J. S., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Tutorials in motor behavior, 3, 3–47. Kugler, P. N., Kelso, J. S., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Tutorials in motor behavior, 3, 3–47.
go back to reference Li, Y., Levin, O., Carson, R. G., & Swinnen, S. P. (2004). Bimanual coordination: constraints imposed by the relative timing of homologous muscle activation. Experimental Brain Research, 156(1), 27–38.PubMed Li, Y., Levin, O., Carson, R. G., & Swinnen, S. P. (2004). Bimanual coordination: constraints imposed by the relative timing of homologous muscle activation. Experimental Brain Research, 156(1), 27–38.PubMed
go back to reference Li, Y., Levin, O., Forner-Cordero, A., Ronsse, R., & Swinnen, S. P. (2009). Coordination of complex bimanual multijoint movements under increasing cycling frequencies: The prevalence of mirror-image and translational symmetry. Acta Psychologica, 130(3), 183–195.PubMed Li, Y., Levin, O., Forner-Cordero, A., Ronsse, R., & Swinnen, S. P. (2009). Coordination of complex bimanual multijoint movements under increasing cycling frequencies: The prevalence of mirror-image and translational symmetry. Acta Psychologica, 130(3), 183–195.PubMed
go back to reference Marteniuk, R. G., MacKenzie, C. L., & Baba, D. M. (1984). Bimanual movement control: Information processing and interaction effects. The Quarterly Journal of Experimental Psychology Section A, 36(2), 335–365. Marteniuk, R. G., MacKenzie, C. L., & Baba, D. M. (1984). Bimanual movement control: Information processing and interaction effects. The Quarterly Journal of Experimental Psychology Section A, 36(2), 335–365.
go back to reference Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414(6859), 69.PubMed Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414(6859), 69.PubMed
go back to reference Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRef Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRef
go back to reference Pickavance, J., Azmoodeh, A., & Wilson, A. D. (2018). The effects of feedback format, and egocentric & allocentric relative phase on coordination stability. Human Movement Science, 59, 143–152.PubMed Pickavance, J., Azmoodeh, A., & Wilson, A. D. (2018). The effects of feedback format, and egocentric & allocentric relative phase on coordination stability. Human Movement Science, 59, 143–152.PubMed
go back to reference Ren, J., Huang, S., Zhang, J., Zhu, Q., Wilson, A. D., Snapp-Childs, W., & Bingham, G. P. (2015). The 50 s cliff: A decline in perceptuo-motor learning, not a deficit in visual motion perception. PLoS One, 10(4), e0121708.PubMedPubMedCentral Ren, J., Huang, S., Zhang, J., Zhu, Q., Wilson, A. D., Snapp-Childs, W., & Bingham, G. P. (2015). The 50 s cliff: A decline in perceptuo-motor learning, not a deficit in visual motion perception. PLoS One, 10(4), e0121708.PubMedPubMedCentral
go back to reference Snapp-Childs, W., Wilson, A. D., & Bingham, G. P. (2011). The stability of rhythmic movement coordination depends on relative speed: The Bingham model supported. Experimental Brain Research, 215(2), 89–100.PubMed Snapp-Childs, W., Wilson, A. D., & Bingham, G. P. (2011). The stability of rhythmic movement coordination depends on relative speed: The Bingham model supported. Experimental Brain Research, 215(2), 89–100.PubMed
go back to reference Snapp-Childs, W., Wilson, A. D., & Bingham, G. P. (2015). Transfer of learning between unimanual and bimanual rhythmic movement coordination: Transfer is a function of the task dynamic. Experimental Brain Research, 233(7), 2225–2238.PubMed Snapp-Childs, W., Wilson, A. D., & Bingham, G. P. (2015). Transfer of learning between unimanual and bimanual rhythmic movement coordination: Transfer is a function of the task dynamic. Experimental Brain Research, 233(7), 2225–2238.PubMed
go back to reference Sparrow, W. A., & Newell, K. M. (1998). Metabolic energy expenditure and the regulation of movement economy. Psychonomic Bulletin & Review, 5(2), 173–196. Sparrow, W. A., & Newell, K. M. (1998). Metabolic energy expenditure and the regulation of movement economy. Psychonomic Bulletin & Review, 5(2), 173–196.
go back to reference Swinnen, S. P. (2002). Intermanual coordination: From behavioural principles to neural-network interactions. Nature Reviews Neuroscience, 3(5), 348.PubMed Swinnen, S. P. (2002). Intermanual coordination: From behavioural principles to neural-network interactions. Nature Reviews Neuroscience, 3(5), 348.PubMed
go back to reference Swinnen, S. P., Dounskaia, N., & Duysens, J. (2002). Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame. Journal of cognitive neuroscience, 14(3), 463–471.PubMed Swinnen, S. P., Dounskaia, N., & Duysens, J. (2002). Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame. Journal of cognitive neuroscience, 14(3), 463–471.PubMed
go back to reference Swinnen, S. P., Jardin, K., Meulenbroek, R., Dounskaia, N., & Den Brandt, M. H. V. (1997). Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. Journal of Cognitive Neuroscience, 9(3), 348–377.PubMed Swinnen, S. P., Jardin, K., Meulenbroek, R., Dounskaia, N., & Den Brandt, M. H. V. (1997). Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. Journal of Cognitive Neuroscience, 9(3), 348–377.PubMed
go back to reference Swinnen, S. P., Young, D. E., Walter, C. B., & Serrien, D. J. (1991). Control of asymmetrical bimanual movements. Experimental Brain Research, 85(1), 163–173.PubMed Swinnen, S. P., Young, D. E., Walter, C. B., & Serrien, D. J. (1991). Control of asymmetrical bimanual movements. Experimental Brain Research, 85(1), 163–173.PubMed
go back to reference Temprado, J. J., Swinnen, S. P., Carson, R. G., Tourment, A., & Laurent, M. (2003). Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Human Movement Science, 22(3), 339–363.PubMed Temprado, J. J., Swinnen, S. P., Carson, R. G., Tourment, A., & Laurent, M. (2003). Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Human Movement Science, 22(3), 339–363.PubMed
go back to reference Wilson, A. D., Bingham, G. P., & Craig, J. C. (2003). Proprioceptive perception of phase variability. Journal of Experimental Psychology: Human Perception and Performance, 29(6), 1179.PubMed Wilson, A. D., Bingham, G. P., & Craig, J. C. (2003). Proprioceptive perception of phase variability. Journal of Experimental Psychology: Human Perception and Performance, 29(6), 1179.PubMed
go back to reference Wilson, A. D., Snapp-Childs, W., & Bingham, G. P. (2010a). Perceptual learning immediately yields new stable motor coordination. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1508.PubMed Wilson, A. D., Snapp-Childs, W., & Bingham, G. P. (2010a). Perceptual learning immediately yields new stable motor coordination. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1508.PubMed
go back to reference Wilson, A. D., Snapp-Childs, W., Coats, R., & Bingham, G. P. (2010b). Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Experimental Brain Research, 205(4), 513–520.PubMed Wilson, A. D., Snapp-Childs, W., Coats, R., & Bingham, G. P. (2010b). Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Experimental Brain Research, 205(4), 513–520.PubMed
go back to reference Wilson, A. D., Tresilian, J. R., & Schlaghecken, F. (2011). The masked priming toolbox: an open source Matlab toolbox for masked priming researchers. Behavior Research Methods, 43, 210–214.PubMed Wilson, A. D., Tresilian, J. R., & Schlaghecken, F. (2011). The masked priming toolbox: an open source Matlab toolbox for masked priming researchers. Behavior Research Methods, 43, 210–214.PubMed
go back to reference Zhu, Q., Mirich, T., Huang, S., Snapp-Childs, W., & Bingham, G. P. (2017). When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination. Attention, Perception, & Psychophysics, 79(6), 1830–1840. Zhu, Q., Mirich, T., Huang, S., Snapp-Childs, W., & Bingham, G. P. (2017). When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination. Attention, Perception, & Psychophysics, 79(6), 1830–1840.
Metagegevens
Titel
Using visual and/or kinesthetic information to stabilize intrinsic bimanual coordination patterns is a function of movement frequency
Auteurs
Shaochen Huang
Breton Van Syoc
Ruonan Yang
Taylor Kuehn
Derek Smith
Qin Zhu
Publicatiedatum
27-01-2020
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 2/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01288-2

Andere artikelen Uitgave 2/2021

Psychological Research 2/2021 Naar de uitgave