Skip to main content
Top
Gepubliceerd in:

01-12-2012 | Original Paper

Microglia in the Cerebral Cortex in Autism

Auteurs: Nicole A. Tetreault, Atiya Y. Hakeem, Sue Jiang, Brian A. Williams, Elizabeth Allman, Barbara J. Wold, John M. Allman

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 12/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had significantly more microglia compared to controls (p = 0.02). One such subject had a microglial density in FI within the control range and was also an outlier behaviorally with respect to other subjects with autism. In VC, microglial densities were also significantly greater in individuals with autism versus controls (p = 0.0002). Since we observed increased densities of microglia in two functionally and anatomically disparate cortical areas, we suggest that these immune cells are probably denser throughout cerebral cortex in brains of people with autism.
Voetnoten
1
In Table 5 of Lyck et al. (2009) the column headed “total neocortex” refers to the neocortical gray matter only. In their methods Section 2.2.7, “Estimation of Cell Numbers,” they describe their selection of the region of interest, saying, “… followed by delineation the border between white matter and neocortex at 210× magnification (10 × lens) marking the white matter as ‘exclusive region’,” indicating that their cell number estimates were made from a region that excluded white matter. Further, Fig. 2b from this paper indicates that the brain slices were segmented into “frontal neocortex,” “temporal neocortex,” “parietal neocortex,” “occipital neocortex,” and “white matter,” implying that the various neocortex segments do not include white matter. Thus, in Table 5 the column heads “frontal cortex,” “temporal cortex,” etc. presumably refer specifically to the gray matter portions of those regions, and “total neocortex” (which is a sum of the other four columns) also includes only gray matter.
 
Literatuur
go back to reference Allman, J. M., Tetreault, N. A., Hakeem, A. Y., Manaye, K. F., Semendeferi, K., Erwin, J. M., et al. (2010). The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Structure and Function, 214, 495–517.PubMedCrossRef Allman, J. M., Tetreault, N. A., Hakeem, A. Y., Manaye, K. F., Semendeferi, K., Erwin, J. M., et al. (2010). The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Structure and Function, 214, 495–517.PubMedCrossRef
go back to reference Allman, J., Watson, K., Tetreault, N., & Hakeem, A. (2005). Intuition and autism: A possible role for von Economo neurons. Trends in Cognitive Science, 9, 367–373.CrossRef Allman, J., Watson, K., Tetreault, N., & Hakeem, A. (2005). Intuition and autism: A possible role for von Economo neurons. Trends in Cognitive Science, 9, 367–373.CrossRef
go back to reference Ashwood, P., Wills, S., & Van der Water, J. (2006). The immune response in autism: A new frontier for autism research. Journal of Leukocyte Biology, 80, 1–15.PubMedCrossRef Ashwood, P., Wills, S., & Van der Water, J. (2006). The immune response in autism: A new frontier for autism research. Journal of Leukocyte Biology, 80, 1–15.PubMedCrossRef
go back to reference Atladóttir, H. O., Thorsen, P., Østergaard, L., Schendel, D. E., Lemcke, S., Abdallah, M., et al. (2010). Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. Journal of Autism and Developmental Disorders, 40, 1423–1430.PubMedCrossRef Atladóttir, H. O., Thorsen, P., Østergaard, L., Schendel, D. E., Lemcke, S., Abdallah, M., et al. (2010). Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. Journal of Autism and Developmental Disorders, 40, 1423–1430.PubMedCrossRef
go back to reference Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Science, 10, 258–264.CrossRef Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Science, 10, 258–264.CrossRef
go back to reference Bianchin, M. M., Capella, H. M., Chaves, D. L., Steindel, M., Grisard, E. C., Ganev, G. G., et al. (2004). Nasu-Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy—PLOSL): A dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cellular and Molecular Neurobiology, 24, 1–24.PubMedCrossRef Bianchin, M. M., Capella, H. M., Chaves, D. L., Steindel, M., Grisard, E. C., Ganev, G. G., et al. (2004). Nasu-Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy—PLOSL): A dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cellular and Molecular Neurobiology, 24, 1–24.PubMedCrossRef
go back to reference Blinzinger, K., & Kreutzberg, G. (1968). Displacement of synaptic terminals from regenerating motoneurons by Microglial cells. Zeitschrift für Zellforschung und Mikroscopische Anatomie, 85, 145–157.CrossRef Blinzinger, K., & Kreutzberg, G. (1968). Displacement of synaptic terminals from regenerating motoneurons by Microglial cells. Zeitschrift für Zellforschung und Mikroscopische Anatomie, 85, 145–157.CrossRef
go back to reference Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 4, 209–224. Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 4, 209–224.
go back to reference Carson, M. J., Bilousova, T. V., Puntambekar, S. S., Melchior, B., Doose, J. M., & Ethell, I. M. (2007). A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics, 4, 571–579.PubMedCrossRef Carson, M. J., Bilousova, T. V., Puntambekar, S. S., Melchior, B., Doose, J. M., & Ethell, I. M. (2007). A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics, 4, 571–579.PubMedCrossRef
go back to reference Chen, S. K., Tvrdik, P., Peden, E., Cho, S., Wu, S., Spangrude, G., et al. (2010). Hematopoietic origin of pathological grooming in Hoxb8 mice. Cell, 141, 775–785.PubMedCrossRef Chen, S. K., Tvrdik, P., Peden, E., Cho, S., Wu, S., Spangrude, G., et al. (2010). Hematopoietic origin of pathological grooming in Hoxb8 mice. Cell, 141, 775–785.PubMedCrossRef
go back to reference Chez, M. G., & Guido-Estrada, N. (2010). Immune therapy in autism: historical experience and future directions with immunomodulatory therapy. Neurotherapeutics, 7, 293–301.PubMedCrossRef Chez, M. G., & Guido-Estrada, N. (2010). Immune therapy in autism: historical experience and future directions with immunomodulatory therapy. Neurotherapeutics, 7, 293–301.PubMedCrossRef
go back to reference Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15, 225–230.PubMedCrossRef Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15, 225–230.PubMedCrossRef
go back to reference Cullheim, S., & Thams, S. (2007). The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Research Reviews, 55, 89–96.PubMedCrossRef Cullheim, S., & Thams, S. (2007). The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Research Reviews, 55, 89–96.PubMedCrossRef
go back to reference Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., et al. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8, 752–758.PubMedCrossRef Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., et al. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8, 752–758.PubMedCrossRef
go back to reference Dekaban, A. S. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345–356.PubMedCrossRef Dekaban, A. S. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345–356.PubMedCrossRef
go back to reference Di Martino, A., Ross, K., Uddin, L., Sklar, A., Castellanos, F., & Milham, M. (2009). Processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65, 63–74.PubMedCrossRef Di Martino, A., Ross, K., Uddin, L., Sklar, A., Castellanos, F., & Milham, M. (2009). Processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65, 63–74.PubMedCrossRef
go back to reference D’Mello, C., Le, T., & Swain, M. G. (2009). Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral organ inflammation. Journal of Neuroscience, 29, 2089–2102.PubMedCrossRef D’Mello, C., Le, T., & Swain, M. G. (2009). Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral organ inflammation. Journal of Neuroscience, 29, 2089–2102.PubMedCrossRef
go back to reference Engel, S., Schluesener, H., Mittelbronn, M., Seid, K., Adjodah, D., Wehner, H. D., et al. (2000). Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathologica, 100, 313–322.PubMedCrossRef Engel, S., Schluesener, H., Mittelbronn, M., Seid, K., Adjodah, D., Wehner, H. D., et al. (2000). Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathologica, 100, 313–322.PubMedCrossRef
go back to reference Exton, M. S. (1997). Infection-induced anorexia: Active host defense strategy. Appetite, 29, 369–383.PubMedCrossRef Exton, M. S. (1997). Infection-induced anorexia: Active host defense strategy. Appetite, 29, 369–383.PubMedCrossRef
go back to reference Frahm, H. D., Stephan, H., & Stephan, M. (1982). Comparison of brain structure volumes in Insectivora and Primates: I, neocortex. Journal für Hirnforschung, 23, 375–389.PubMed Frahm, H. D., Stephan, H., & Stephan, M. (1982). Comparison of brain structure volumes in Insectivora and Primates: I, neocortex. Journal für Hirnforschung, 23, 375–389.PubMed
go back to reference Furhmann, M., Bittner, T., Jung, C., Burgold, S., Ochs, S. M., Hoffman, N., et al. (2010). Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nature Neuroscience, 13, 411–413.CrossRef Furhmann, M., Bittner, T., Jung, C., Burgold, S., Ochs, S. M., Hoffman, N., et al. (2010). Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nature Neuroscience, 13, 411–413.CrossRef
go back to reference Girard, S., Tremblay, L., Lepage, M., & Sébire, G. (2010). IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. Journal of Immunology, 184, 3997–4005.CrossRef Girard, S., Tremblay, L., Lepage, M., & Sébire, G. (2010). IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. Journal of Immunology, 184, 3997–4005.CrossRef
go back to reference Goldberg, W. A., Osann, K., Filipek, P. A., et al. (2003). Language and other regression: Assessment and timing. Journal of Autism and Developmental Disorders, 33, 607–616.PubMedCrossRef Goldberg, W. A., Osann, K., Filipek, P. A., et al. (2003). Language and other regression: Assessment and timing. Journal of Autism and Developmental Disorders, 33, 607–616.PubMedCrossRef
go back to reference Goldman, S., Wang, C., Salgado, M. W., Greene, P. E., Kim, M., & Rapin, I. (2009). Motor stereotypies in children with autism and other developmental disorders. Developmental Medicine and Child Neurology, 51, 30–38.PubMedCrossRef Goldman, S., Wang, C., Salgado, M. W., Greene, P. E., Kim, M., & Rapin, I. (2009). Motor stereotypies in children with autism and other developmental disorders. Developmental Medicine and Child Neurology, 51, 30–38.PubMedCrossRef
go back to reference Graeber, M. B., Bise, K., & Mehraein, P. (1993). Synaptic stripping in the human facial nucleus. Acta Neuropathologica, 86, 179–181.PubMedCrossRef Graeber, M. B., Bise, K., & Mehraein, P. (1993). Synaptic stripping in the human facial nucleus. Acta Neuropathologica, 86, 179–181.PubMedCrossRef
go back to reference Graeber, M. B., & Streit, W. J. (1990). Microglia: Immune network in the CNS. Brain Pathology, 1, 2–5.PubMedCrossRef Graeber, M. B., & Streit, W. J. (1990). Microglia: Immune network in the CNS. Brain Pathology, 1, 2–5.PubMedCrossRef
go back to reference Graeber, M. B., & Streit, W. J. (2010). Microglia: Biology and neuropathology. Acta Neuropathologica, 119, 89–105.PubMedCrossRef Graeber, M. B., & Streit, W. J. (2010). Microglia: Biology and neuropathology. Acta Neuropathologica, 119, 89–105.PubMedCrossRef
go back to reference Graybiel, A. M., & Rauch, S. L. (2000). Toward a neurobiology of obsessive-compulsive disorder. Neuron, 28, 343–347.PubMedCrossRef Graybiel, A. M., & Rauch, S. L. (2000). Toward a neurobiology of obsessive-compulsive disorder. Neuron, 28, 343–347.PubMedCrossRef
go back to reference Gundersen, H. J., Bendtsen, T. F., Korbo, L., Marcussen, N., Møller, A., Nielsen, K., et al. (1988). Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 96, 379–394.PubMedCrossRef Gundersen, H. J., Bendtsen, T. F., Korbo, L., Marcussen, N., Møller, A., Nielsen, K., et al. (1988). Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 96, 379–394.PubMedCrossRef
go back to reference Happe, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25.PubMedCrossRef Happe, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25.PubMedCrossRef
go back to reference Hart, B. L. (1998). Biological basis of the behavior of sick animals. Neuroscience and Biobehavioral Reviews, 12, 123–137.CrossRef Hart, B. L. (1998). Biological basis of the behavior of sick animals. Neuroscience and Biobehavioral Reviews, 12, 123–137.CrossRef
go back to reference Hirasawa, T., Ohsawa, K., Imai, Y., Ondo, Y., Akazawa, C., Uchino, S., et al. (2005). Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. Journal of Neuroscience Research, 81, 357–362.PubMedCrossRef Hirasawa, T., Ohsawa, K., Imai, Y., Ondo, Y., Akazawa, C., Uchino, S., et al. (2005). Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. Journal of Neuroscience Research, 81, 357–362.PubMedCrossRef
go back to reference Imamoto, K., & Leblond, C. P. (1978). Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. Journal of Comparative Neurology, 180, 139–163.PubMedCrossRef Imamoto, K., & Leblond, C. P. (1978). Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. Journal of Comparative Neurology, 180, 139–163.PubMedCrossRef
go back to reference Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of under connectivity. Brain, 127, 1811–1821.PubMedCrossRef Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of under connectivity. Brain, 127, 1811–1821.PubMedCrossRef
go back to reference Kanner, L. (1968). Autistic disturbances of affective contact. Acta Paedopsychiatrica, 35, 100–136.PubMed Kanner, L. (1968). Autistic disturbances of affective contact. Acta Paedopsychiatrica, 35, 100–136.PubMed
go back to reference Kreutzberg, G. W. (1996). Microglia: A sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312–318.PubMedCrossRef Kreutzberg, G. W. (1996). Microglia: A sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312–318.PubMedCrossRef
go back to reference Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207, 111–116.PubMedCrossRef Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207, 111–116.PubMedCrossRef
go back to reference Loane, D. J., & Byrnes, K. R. (2010). Role of microglia in neurotrauma. Neurotherapeutics, 7, 366–377.PubMedCrossRef Loane, D. J., & Byrnes, K. R. (2010). Role of microglia in neurotrauma. Neurotherapeutics, 7, 366–377.PubMedCrossRef
go back to reference Lyck, L., Santamaria, I. D., Pakkenberg, B., Chemnitz, J., Schrøder, H. D., Finsen, B., et al. (2009). An empirical analysis of the precision of estimating the numbers of neurons and glia in human neocortex using a fractionator-design with sub-sampling. Journal of Neuroscience Methods, 182, 143–156.PubMedCrossRef Lyck, L., Santamaria, I. D., Pakkenberg, B., Chemnitz, J., Schrøder, H. D., Finsen, B., et al. (2009). An empirical analysis of the precision of estimating the numbers of neurons and glia in human neocortex using a fractionator-design with sub-sampling. Journal of Neuroscience Methods, 182, 143–156.PubMedCrossRef
go back to reference MacDonald, R., Green, G., Mansfield, R., Geckeler, A., Gardenier, N., Anderson, J., et al. (2007). Stereotypy in young children with autism and typically developing children. Research in Developmental Disabilities, 28, 266–277.PubMedCrossRef MacDonald, R., Green, G., Mansfield, R., Geckeler, A., Gardenier, N., Anderson, J., et al. (2007). Stereotypy in young children with autism and typically developing children. Research in Developmental Disabilities, 28, 266–277.PubMedCrossRef
go back to reference Matson, J. L., & Lovullo, S. V. (2008). A review of behavioral treatments for self-injurious behaviors of persons with autism spectrum disorders. Behavior Modification, 32, 61–76.PubMedCrossRef Matson, J. L., & Lovullo, S. V. (2008). A review of behavioral treatments for self-injurious behaviors of persons with autism spectrum disorders. Behavior Modification, 32, 61–76.PubMedCrossRef
go back to reference Minio-Paluello, I., Baron-Cohen, S., Avenanti, A., Walsh, V., & Aglioti, S. M. (2009). Absence of embodied empathy during pain observation in Asperger syndrome. Biological Psychiatry, 65, 55–62.PubMedCrossRef Minio-Paluello, I., Baron-Cohen, S., Avenanti, A., Walsh, V., & Aglioti, S. M. (2009). Absence of embodied empathy during pain observation in Asperger syndrome. Biological Psychiatry, 65, 55–62.PubMedCrossRef
go back to reference Mittelbronn, M., Dietz, K., Schluesener, H. J., & Meyeremann, R. (2001). Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathologica, 101, 249–255.PubMed Mittelbronn, M., Dietz, K., Schluesener, H. J., & Meyeremann, R. (2001). Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathologica, 101, 249–255.PubMed
go back to reference Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68, 368–376.PubMedCrossRef Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68, 368–376.PubMedCrossRef
go back to reference Neumann, H., & Takahashi, K. (2007). Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. Journal of Neuroimmunology, 184, 92–99.PubMedCrossRef Neumann, H., & Takahashi, K. (2007). Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. Journal of Neuroimmunology, 184, 92–99.PubMedCrossRef
go back to reference Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314–1318.PubMedCrossRef Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314–1318.PubMedCrossRef
go back to reference Paloneva, J., Manninen, T., Christman, G., Hovanes, K., Mandelin, J., Adolfsson, R., et al. (2002). Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. American Journal of Human Genetics, 71, 656–662.PubMedCrossRef Paloneva, J., Manninen, T., Christman, G., Hovanes, K., Mandelin, J., Adolfsson, R., et al. (2002). Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. American Journal of Human Genetics, 71, 656–662.PubMedCrossRef
go back to reference Paolicelli R. C., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., et al. (2011) Synaptic pruning by microglia is necessary for normal brain development. Science, 333, 1456–1458. Epub 2011 Jul 21. Paolicelli R. C., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., et al. (2011) Synaptic pruning by microglia is necessary for normal brain development. Science, 333, 1456–1458. Epub 2011 Jul 21.
go back to reference Perry, V. H. (2010). Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathologica, 120, 277–286.PubMedCrossRef Perry, V. H. (2010). Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathologica, 120, 277–286.PubMedCrossRef
go back to reference Santos, M., Uppal, N., Butti, C., Wicinski, B., Schmeidler, J., Giannakopolous, P., et al. (2011). Von Economo neurons in autism: a stereological study of frontoinsular cortex in children. Brain Research, 1380, 206–217.PubMedCrossRef Santos, M., Uppal, N., Butti, C., Wicinski, B., Schmeidler, J., Giannakopolous, P., et al. (2011). Von Economo neurons in autism: a stereological study of frontoinsular cortex in children. Brain Research, 1380, 206–217.PubMedCrossRef
go back to reference Sasaki, Y., Ohsawa, K., Kanazawa, H., Kohsaka, S., & Imai, Y. (2001). Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochemical and Biophysical Research Communications, 286, 292–297.PubMedCrossRef Sasaki, Y., Ohsawa, K., Kanazawa, H., Kohsaka, S., & Imai, Y. (2001). Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochemical and Biophysical Research Communications, 286, 292–297.PubMedCrossRef
go back to reference Schmid, C. D., Melchior, B., Masek, K., Puntambekar, S. S., Danielson, P. E., Lo, D. D., et al. (2009). Differential gene expression LPS/IFNγ activated microglia and macrophages: In vitro versus in vivo. Journal of Neurochemistry, 109, 117–125.PubMedCrossRef Schmid, C. D., Melchior, B., Masek, K., Puntambekar, S. S., Danielson, P. E., Lo, D. D., et al. (2009). Differential gene expression LPS/IFNγ activated microglia and macrophages: In vitro versus in vivo. Journal of Neurochemistry, 109, 117–125.PubMedCrossRef
go back to reference Sessa, G., Podini, P., Mariani, M., Meroni, A., Spreafico, R., Sinigaglia, S., et al. (2004). Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. The European Journal of Neuroscience, 20, 2617–2628.PubMedCrossRef Sessa, G., Podini, P., Mariani, M., Meroni, A., Spreafico, R., Sinigaglia, S., et al. (2004). Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. The European Journal of Neuroscience, 20, 2617–2628.PubMedCrossRef
go back to reference Simms, M. L., Kemper, T. L., Timbie, C. M., Bauman, M. L., & Blatt, G. J. (2009). The anterior cingulate cortex in autism: Heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathologica, 118, 673–684.PubMedCrossRef Simms, M. L., Kemper, T. L., Timbie, C. M., Bauman, M. L., & Blatt, G. J. (2009). The anterior cingulate cortex in autism: Heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathologica, 118, 673–684.PubMedCrossRef
go back to reference Smith, S. E., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. The Journal of Neuroscience, 27, 10695–10702.PubMedCrossRef Smith, S. E., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. The Journal of Neuroscience, 27, 10695–10702.PubMedCrossRef
go back to reference Streit, W. J., Braak, H., Xue, Q.-S., & Bechmann, I. (2009). Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathologica, 118, 475–485.PubMedCrossRef Streit, W. J., Braak, H., Xue, Q.-S., & Bechmann, I. (2009). Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathologica, 118, 475–485.PubMedCrossRef
go back to reference Tetreault, N. A., Williams, B. A., Hasenstaub, A., Hakeem, A. Y., Liu, M., Abelin, A. C. T., et al. (2009) RNA-Seq studies of gene expression in fronto-insular (FI) cortex in autistic and control stuides reveal gene networks related to inflammation and synaptic function. Program No. 437.3. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online. Tetreault, N. A., Williams, B. A., Hasenstaub, A., Hakeem, A. Y., Liu, M., Abelin, A. C. T., et al. (2009) RNA-Seq studies of gene expression in fronto-insular (FI) cortex in autistic and control stuides reveal gene networks related to inflammation and synaptic function. Program No. 437.3. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online.
go back to reference Thomas, D. M., Francescutti-Verbeem, D. M., & Kuhn, D. M. (2006). Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. The FASEB Journal, 20, 515–517. Thomas, D. M., Francescutti-Verbeem, D. M., & Kuhn, D. M. (2006). Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. The FASEB Journal, 20, 515–517.
go back to reference Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmermann, A. W., & Pardo, C. A. (2005). Neuroglial activtion and neuroinflammation in the brains of patients with autism. Annals of Neurology, 57, 67–81.PubMedCrossRef Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmermann, A. W., & Pardo, C. A. (2005). Neuroglial activtion and neuroinflammation in the brains of patients with autism. Annals of Neurology, 57, 67–81.PubMedCrossRef
go back to reference Voineagu, I., Wang, X., Johnston, P., Lowe, J. K., Tian, Y., Horvath, S., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474, 380–384.PubMedCrossRef Voineagu, I., Wang, X., Johnston, P., Lowe, J. K., Tian, Y., Horvath, S., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474, 380–384.PubMedCrossRef
go back to reference Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S., & Nabekura, J. (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. The Journal of Neuroscience, 29, 3974–3980.PubMedCrossRef Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S., & Nabekura, J. (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. The Journal of Neuroscience, 29, 3974–3980.PubMedCrossRef
go back to reference Walters, A. S., Barrett, R. P., Feinstein, C., Mercurio, A., & Hole, W. T. (1990). A case report of naltrexone treatment of self-injury and social withdrawal in autism. Journal of Autism and Developmental Disorders, 20, 169–176.PubMedCrossRef Walters, A. S., Barrett, R. P., Feinstein, C., Mercurio, A., & Hole, W. T. (1990). A case report of naltrexone treatment of self-injury and social withdrawal in autism. Journal of Autism and Developmental Disorders, 20, 169–176.PubMedCrossRef
go back to reference Wei, H., Zou, H., Sheikh, A. M., Malik, M., Dobkin, C., Brown, W. T., et al. (2011). IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. Journal of Neuroinflammation, 19(8), 52.CrossRef Wei, H., Zou, H., Sheikh, A. M., Malik, M., Dobkin, C., Brown, W. T., et al. (2011). IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. Journal of Neuroinflammation, 19(8), 52.CrossRef
go back to reference Zimmerman, A., Jyonouchi, H., Comi, A., Connors, S., Milstien, S., Varsou, A., et al. (2005). Cerebrospinal fluid and serum markers of inflammation in autism. Pediatric Neurology, 35, 195–201.CrossRef Zimmerman, A., Jyonouchi, H., Comi, A., Connors, S., Milstien, S., Varsou, A., et al. (2005). Cerebrospinal fluid and serum markers of inflammation in autism. Pediatric Neurology, 35, 195–201.CrossRef
go back to reference Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23, 143–152.PubMedCrossRef Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23, 143–152.PubMedCrossRef
Metagegevens
Titel
Microglia in the Cerebral Cortex in Autism
Auteurs
Nicole A. Tetreault
Atiya Y. Hakeem
Sue Jiang
Brian A. Williams
Elizabeth Allman
Barbara J. Wold
John M. Allman
Publicatiedatum
01-12-2012
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 12/2012
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-012-1513-0