Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2018

15-07-2017 | Original Article

Synchronization to metrical levels in music depends on low-frequency spectral components and tempo

Auteurs: Birgitta Burger, Justin London, Marc R. Thompson, Petri Toiviainen

Gepubliceerd in: Psychological Research | Uitgave 6/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Previous studies have found relationships between music-induced movement and musical characteristics on more general levels, such as tempo or pulse clarity. This study focused on synchronization abilities to music of finely-varying tempi and varying degrees of low-frequency spectral change/flux. Excerpts from six classic Motown/R&B songs at three different tempos (105, 115, and 130 BPM) were used as stimuli in this experiment. Each was then time-stretched by a factor of 5% with regard to the original tempo, yielding a total of 12 stimuli that were presented to 30 participants. Participants were asked to move along with the stimuli while being recorded with an optical motion capture system. Synchronization analysis was performed relative to the beat and the bar level of the music and four body parts. Results suggest that participants synchronized different body parts to specific metrical levels; in particular, vertical movements of hip and feet were synchronized to the beat level when the music contained large amounts of low-frequency spectral flux and had a slower tempo, while synchronization of head and hands was more tightly coupled to the weak flux stimuli at the bar level. Synchronization was generally more tightly coupled to the slower versions of the same stimuli, while synchronization showed an inverted u-shape effect at the bar level as tempo increased. These results indicate complex relationships between musical characteristics, in particular regarding metrical and temporal structure, and our ability to synchronize and entrain to such musical stimuli.
Voetnoten
1
Groove is commonly described as “the urge to move in response to music, combined with the positive affect associated with the coupling of sensory and motor processes” (Janata, Tomic, & Haberman, 2012, p. 54).
 
2
The performances to the original tempo stimuli belonged to a different experiment condition and are therefore not included in this analysis, as this analysis shall give insights into effects of relative and absolute tempo differences. Moreover, these stimuli were subsequently used in a perceptual experiment investigating the abilities to judge tempo based on point-light dance animations (London et al., 2016).
 
Literatuur
go back to reference Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological), 57, 289–300. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological), 57, 289–300.
go back to reference Brown, S., Merker, B., & Wallin, N. L. (2000). An introduction to evolutionary musicology. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 3–24). Cambridge: MIT Press. Brown, S., Merker, B., & Wallin, N. L. (2000). An introduction to evolutionary musicology. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 3–24). Cambridge: MIT Press.
go back to reference Burger, B., Ahokas, R., Keipi, A., & Toiviainen, P. (2013a). Relationships between spectral flux, perceived rhythmic strength, and the propensity to move. In R. Bresin (Ed.), Proceedings of the 10th sound and music computing conference (pp. 179–184). Stockholm, Sweden: KTH Royal Institute of Technology. Burger, B., Ahokas, R., Keipi, A., & Toiviainen, P. (2013a). Relationships between spectral flux, perceived rhythmic strength, and the propensity to move. In R. Bresin (Ed.), Proceedings of the 10th sound and music computing conference (pp. 179–184). Stockholm, Sweden: KTH Royal Institute of Technology.
go back to reference Burger, B., & Toiviainen, P. (2013). MoCap Toolbox—a Matlab toolbox for computational analysis of movement data. In R. Bresin (Ed.), Proceedings of the 10th sound and music computing conference (pp. 172–178). Stockholm, Sweden: KTH Royal Institute of Technology. Burger, B., & Toiviainen, P. (2013). MoCap Toolbox—a Matlab toolbox for computational analysis of movement data. In R. Bresin (Ed.), Proceedings of the 10th sound and music computing conference (pp. 172–178). Stockholm, Sweden: KTH Royal Institute of Technology.
go back to reference Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2009). The role of auditory and pre- motor cortex in sensorimotor transformations. The Neurosciences and Music III Disorders and Plasticity: Annals of the New York Academy of Science, 1169, 15–34. Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2009). The role of auditory and pre- motor cortex in sensorimotor transformations. The Neurosciences and Music III Disorders and Plasticity: Annals of the New York Academy of Science, 1169, 15–34.
go back to reference Drake, C., Gros, L., & Penel, A. (1999). How fast is that music? The relation between physical and perceived tempo. In S. W. Yi (Ed.), Music, mind, and science (pp. 190–203). Seoul: Seoul National University Press. Drake, C., Gros, L., & Penel, A. (1999). How fast is that music? The relation between physical and perceived tempo. In S. W. Yi (Ed.), Music, mind, and science (pp. 190–203). Seoul: Seoul National University Press.
go back to reference Dunbar, R. (2012). On the evolutionary function of song and dance. In N. Bannan (Ed.), Music, language, and human evolution (pp. 201–214). Oxford: Oxford University Press.CrossRef Dunbar, R. (2012). On the evolutionary function of song and dance. In N. Bannan (Ed.), Music, language, and human evolution (pp. 201–214). Oxford: Oxford University Press.CrossRef
go back to reference Eerola, T., Luck, G., & Toiviainen, P. (2006). An investigation of pre-schoolers’ corporeal synchronization with music. In M. Baroni, A. R. Addessi, R. Caterina, & M. Costa (Eds.), Proceedings of the 9th international conference on music perception and cognition (pp. 472–476). Bologna: University of Bologna. Eerola, T., Luck, G., & Toiviainen, P. (2006). An investigation of pre-schoolers’ corporeal synchronization with music. In M. Baroni, A. R. Addessi, R. Caterina, & M. Costa (Eds.), Proceedings of the 9th international conference on music perception and cognition (pp. 472–476). Bologna: University of Bologna.
go back to reference Godøy, R. I., Haga, E., & Jensenius, A. R. (2006). Playing “air instruments”: Mimicry of sound-producing gestures by novices and experts. In S. Gibet, N. Courty, & J.-F. Kamp (Eds.), Gesture in human–computer interaction and simulation (Vol. 3881, pp. 256–267)., Lecture notes in computer science Berlin: Springer.CrossRef Godøy, R. I., Haga, E., & Jensenius, A. R. (2006). Playing “air instruments”: Mimicry of sound-producing gestures by novices and experts. In S. Gibet, N. Courty, & J.-F. Kamp (Eds.), Gesture in human–computer interaction and simulation (Vol. 3881, pp. 256–267)., Lecture notes in computer science Berlin: Springer.CrossRef
go back to reference Hove, M. J., Marie, C., Bruce, I. C., & Trainor, L. J. (2014). Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proceedings of the National Academy of Sciences, 111, 10383–10388.CrossRef Hove, M. J., Marie, C., Bruce, I. C., & Trainor, L. J. (2014). Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proceedings of the National Academy of Sciences, 111, 10383–10388.CrossRef
go back to reference Jones, M. R., & Boltz, M. G. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.CrossRefPubMed Jones, M. R., & Boltz, M. G. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.CrossRefPubMed
go back to reference Keller, P. E., & Repp, B. H. (2004). When two limbs are weaker than one: Sensorimotor syncopation with alternating hands. Journal of Experimental Psychology, 57, 1085–1101. doi:10.1080/02724980343000693. Keller, P. E., & Repp, B. H. (2004). When two limbs are weaker than one: Sensorimotor syncopation with alternating hands. Journal of Experimental Psychology, 57, 1085–1101. doi:10.​1080/​0272498034300069​3.
go back to reference Lartillot, O., & Toiviainen, P. (2007). A Matlab toolbox for musical feature extraction from audio. Proceedings of the 10th international conference on digital audio effects (pp. 1–8). Bordeaux: University of Bordeaux. Lartillot, O., & Toiviainen, P. (2007). A Matlab toolbox for musical feature extraction from audio. Proceedings of the 10th international conference on digital audio effects (pp. 1–8). Bordeaux: University of Bordeaux.
go back to reference Le Van Quyen, M., Foucher, J., Lachaux, J.-P., Rodriguez, E., Lutz, A., Martinerie, J., & Varela, F. J. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. Journal of Neuroscience Methods, 111, 83–98.CrossRefPubMed Le Van Quyen, M., Foucher, J., Lachaux, J.-P., Rodriguez, E., Lutz, A., Martinerie, J., & Varela, F. J. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. Journal of Neuroscience Methods, 111, 83–98.CrossRefPubMed
go back to reference Leman, M. (2007). Embodied music cognition and mediation technology. Cambridge: MIT Press. Leman, M. (2007). Embodied music cognition and mediation technology. Cambridge: MIT Press.
go back to reference Leman, M., & Godøy, R. I. (2010). Why study musical gesture? In R. I. Godøy & M. Leman (Eds.), Musical gestures. Sound, movement, and meaning (pp. 3–11). New York: Routledge. Leman, M., & Godøy, R. I. (2010). Why study musical gesture? In R. I. Godøy & M. Leman (Eds.), Musical gestures. Sound, movement, and meaning (pp. 3–11). New York: Routledge.
go back to reference Lesaffre, M., De Voogdt, L., Leman, M., De Baets, B., De Meyer, H., & Martens, J.-P. (2008). How potential users of music search and retrieval systems describe the semantic quality of music. Journal of the American Society for Information Science and Technology, 59, 695–707. doi:10.1002/asi.20731.CrossRef Lesaffre, M., De Voogdt, L., Leman, M., De Baets, B., De Meyer, H., & Martens, J.-P. (2008). How potential users of music search and retrieval systems describe the semantic quality of music. Journal of the American Society for Information Science and Technology, 59, 695–707. doi:10.​1002/​asi.​20731.CrossRef
go back to reference London, J. (2011). Tactus ≠ tempo: Some dissociations between attentional focus, motor behavior, and tempo judgment. Empirical Musicology Review, 6, 43–55.CrossRef London, J. (2011). Tactus ≠ tempo: Some dissociations between attentional focus, motor behavior, and tempo judgment. Empirical Musicology Review, 6, 43–55.CrossRef
go back to reference London, J., Burger, B., Thompson, M. R., & Toiviainen, P. (2016). Speed on the dance floor: Auditory and visual cues for musical tempo. Acta Psychologica, 164, 70–80.CrossRefPubMed London, J., Burger, B., Thompson, M. R., & Toiviainen, P. (2016). Speed on the dance floor: Auditory and visual cues for musical tempo. Acta Psychologica, 164, 70–80.CrossRefPubMed
go back to reference Madison, G., Gouyon, F., Ullén, F., & Hörnström, K. (2011). Modeling the tendency for music to induce movement in humans: First correlations with low-level audio descriptors across music genres. Journal of Experimental Psychology: Human Perception and Performance, 37, 1578–1594.PubMed Madison, G., Gouyon, F., Ullén, F., & Hörnström, K. (2011). Modeling the tendency for music to induce movement in humans: First correlations with low-level audio descriptors across music genres. Journal of Experimental Psychology: Human Perception and Performance, 37, 1578–1594.PubMed
go back to reference Moelants, D. (2002). Preferred tempo reconsidered. In C. Stevens, D. Burnham, G. McPherson, E. Schubert, & J. Renwick (Eds.), Proceedings of the 7th international conference on music perception and cognition, Sydney, Australia (pp. 580–583). Adelaide, Australia: Causal Productions. Moelants, D. (2002). Preferred tempo reconsidered. In C. Stevens, D. Burnham, G. McPherson, E. Schubert, & J. Renwick (Eds.), Proceedings of the 7th international conference on music perception and cognition, Sydney, Australia (pp. 580–583). Adelaide, Australia: Causal Productions.
go back to reference Naveda, L., & Leman, M. (2010). The spatiotemporal representation of dance and music gestures using topological gesture analysis (TGA). Music Perception, 28, 93–112.CrossRef Naveda, L., & Leman, M. (2010). The spatiotemporal representation of dance and music gestures using topological gesture analysis (TGA). Music Perception, 28, 93–112.CrossRef
go back to reference Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception, 11, 409–464.CrossRef Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception, 11, 409–464.CrossRef
go back to reference Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: The action simulation for auditory prediction (ASAP) hypothesis. Frontiers in Systematic Neuroscience, 8, 57. doi:10.3389/fnsys.2014.00057. Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: The action simulation for auditory prediction (ASAP) hypothesis. Frontiers in Systematic Neuroscience, 8, 57. doi:10.​3389/​fnsys.​2014.​00057.
go back to reference Phillips-Silver, J., & Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain and Cognition, 67, 94–102.CrossRefPubMed Phillips-Silver, J., & Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain and Cognition, 67, 94–102.CrossRefPubMed
go back to reference Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.CrossRefPubMed Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.CrossRefPubMed
go back to reference Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin and Review, 20, 403–452.CrossRefPubMed Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin and Review, 20, 403–452.CrossRefPubMed
go back to reference Stupacher, J., Hove, M. J., & Janata, P. (2016). Audio features underlying perceived groove and sensorimotor synchronization in music. Music Perception, 33, 571–589.CrossRef Stupacher, J., Hove, M. J., & Janata, P. (2016). Audio features underlying perceived groove and sensorimotor synchronization in music. Music Perception, 33, 571–589.CrossRef
go back to reference Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82, 127–136.CrossRefPubMed Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82, 127–136.CrossRefPubMed
go back to reference Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., … Freund, H.-J. (1998). Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Physical Review Letters, 81, 3291–3294.CrossRef Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., … Freund, H.-J. (1998). Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Physical Review Letters, 81, 3291–3294.CrossRef
go back to reference Todd, N. P. M., O’Boyle, D. J., & Lee, C. S. (1999). A sensory-motor theory of rhythm, time perception and beat induction. Journal of New Music Research, 28, 5–28.CrossRef Todd, N. P. M., O’Boyle, D. J., & Lee, C. S. (1999). A sensory-motor theory of rhythm, time perception and beat induction. Journal of New Music Research, 28, 5–28.CrossRef
go back to reference Todd, N. P. M., Rosengren, S. M., & Colebatch, J. G. (2008). Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neuroscience Letters, 444, 36–41.CrossRefPubMed Todd, N. P. M., Rosengren, S. M., & Colebatch, J. G. (2008). Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neuroscience Letters, 444, 36–41.CrossRefPubMed
go back to reference Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge: MIT Press. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.
go back to reference Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547–558. doi:10.1038/nrn2152.CrossRefPubMed Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547–558. doi:10.​1038/​nrn2152.CrossRefPubMed
Metagegevens
Titel
Synchronization to metrical levels in music depends on low-frequency spectral components and tempo
Auteurs
Birgitta Burger
Justin London
Marc R. Thompson
Petri Toiviainen
Publicatiedatum
15-07-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2018
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0894-2

Andere artikelen Uitgave 6/2018

Psychological Research 6/2018 Naar de uitgave