Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2008

01-05-2008 | Original Article

Mislocalization of a target toward subjective contours: attentional modulation of location signals

Auteurs: Yuki Yamada, Takahiro Kawabe, Kayo Miura

Gepubliceerd in: Psychological Research | Uitgave 3/2008

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

This study examined whether a briefly presented target was mislocalized toward a subjective contour. Observers manually reproduced the position of a briefly presented peripheral target circle above a central fixation cross. A luminance contour, a subjective contour, or a no-contour stimulus was presented in either the left of right visual field, and a no-contour control was presented in the opposite visual field. After these stimuli vanished, a target circle was then presented. Consequently, the degree of mislocalization toward the subjective and luminance contours was the same; this indicated that image integration at a coarse spatial scale cannot explain mislocalization. Experiment 2 revealed that the mislocalization in Experiment 1 was not a result of eye movements. Experiment 3 found that the spatial attention allocated at the location of the luminance and subjective contours was more than that allocated at the no-contour stimulus. An attentional shift toward the task-irrelevant stimulus resulted in a mislocalization of the target.
Voetnoten
1
Ryan’s test adopts nominal significant level given as follows: p = 2 × 0.05/(n × (m − 1)), where n means the number of group to be compared, and m means the distance defined as the number of group X p satisfying X i  ≤ X p  ≤ X j . Here, X i and X j are pair in a concerned hypothesis. On the other hand, the significant level in Bonferroni’s test is set at p = 0.05/ n C 2, where n means the number of group to be compared.
 
Literatuur
go back to reference Atkinson, J., & Braddick, O. J. (1989). ‘Where’ and ‘what’ in visual search. Perception, 18, 181–189.PubMedCrossRef Atkinson, J., & Braddick, O. J. (1989). ‘Where’ and ‘what’ in visual search. Perception, 18, 181–189.PubMedCrossRef
go back to reference Bryant, D. J., & Subbiah, I. (1994). Subjective landmarks for perception and memory for spatial location. Canadian Journal of Experimental Psychology, 48, 119–139.PubMedCrossRef Bryant, D. J., & Subbiah, I. (1994). Subjective landmarks for perception and memory for spatial location. Canadian Journal of Experimental Psychology, 48, 119–139.PubMedCrossRef
go back to reference Davis, G., & Driver, J. (1994). Parallel detection of Kanizsa subjective figures in the human visual system. Nature, 371, 791–793.PubMedCrossRef Davis, G., & Driver, J. (1994). Parallel detection of Kanizsa subjective figures in the human visual system. Nature, 371, 791–793.PubMedCrossRef
go back to reference Hamm, J. P., & Klein, R. M. (2002). Does attention follow the motion in the “shooting line” illusion? Perception & Psychophysics, 64, 279–291. Hamm, J. P., & Klein, R. M. (2002). Does attention follow the motion in the “shooting line” illusion? Perception & Psychophysics, 64, 279–291.
go back to reference Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33, 1219–1240.PubMedCrossRef Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33, 1219–1240.PubMedCrossRef
go back to reference Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics, 45, 162–174. Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics, 45, 162–174.
go back to reference Hubbard, T. L. (1995). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322–338. Hubbard, T. L. (1995). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322–338.
go back to reference Hubbard, T. L., & Ruppel, S. E. (2000). Spatial memory averaging, the landmark attraction effect, and representational gravity. Psychological Research, 64, 41–55.PubMedCrossRef Hubbard, T. L., & Ruppel, S. E. (2000). Spatial memory averaging, the landmark attraction effect, and representational gravity. Psychological Research, 64, 41–55.PubMedCrossRef
go back to reference Joseph, J. S., Chun, M. M., & Nakayama, K. (1997). Attentional requirements in a ‘preattentive’ feature search task. Nature, 387, 805–807.PubMedCrossRef Joseph, J. S., Chun, M. M., & Nakayama, K. (1997). Attentional requirements in a ‘preattentive’ feature search task. Nature, 387, 805–807.PubMedCrossRef
go back to reference Kawahara, J. (2002). Facilitation of local information processing in the attentional blink as indexed by shooting line illusion. Psychological Research, 66, 116–123.PubMedCrossRef Kawahara, J. (2002). Facilitation of local information processing in the attentional blink as indexed by shooting line illusion. Psychological Research, 66, 116–123.PubMedCrossRef
go back to reference Kerzel, D. (2002). Attention shift and memory averaging. The Quarterly Journal of Experimental Psychology. Section A: Human Experimental Psychology, 55, 425–443.CrossRef Kerzel, D. (2002). Attention shift and memory averaging. The Quarterly Journal of Experimental Psychology. Section A: Human Experimental Psychology, 55, 425–443.CrossRef
go back to reference Müsseler, J., Heijden, A. H. C. van der Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Perception & Psychophysics, 61, 1646–1661. Müsseler, J., Heijden, A. H. C. van der Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Perception & Psychophysics, 61, 1646–1661.
go back to reference Nelson, T. O., & Chaiklin, S. (1980). Immediate memory for spatial location. Journal of Experimental Psychology: Human Learning and Memory, 6, 529–545.CrossRef Nelson, T. O., & Chaiklin, S. (1980). Immediate memory for spatial location. Journal of Experimental Psychology: Human Learning and Memory, 6, 529–545.CrossRef
go back to reference Ricciardelli, P., Bonfiglioli, C., Nicoletti, R., & Umiltà, C. (2001). Focusing attention on overlapping and non overlapping figures with subjective contours. Psychological Research, 65, 98–106.PubMedCrossRef Ricciardelli, P., Bonfiglioli, C., Nicoletti, R., & Umiltà, C. (2001). Focusing attention on overlapping and non overlapping figures with subjective contours. Psychological Research, 65, 98–106.PubMedCrossRef
go back to reference Ryan, T. A. (1960). Significance tests for multiple comparison of proportions, variances, and other statistics. Psychological Bulletin, 57, 318–328.PubMedCrossRef Ryan, T. A. (1960). Significance tests for multiple comparison of proportions, variances, and other statistics. Psychological Bulletin, 57, 318–328.PubMedCrossRef
go back to reference Schmidt, T., Werner, S., & Diedrichsen, J. (2003). Spatial distortions induced by multiple visual landmarks: How local distortions combine to produce complex distortion patterns. Perception & Psychophysics, 65, 861–873. Schmidt, T., Werner, S., & Diedrichsen, J. (2003). Spatial distortions induced by multiple visual landmarks: How local distortions combine to produce complex distortion patterns. Perception & Psychophysics, 65, 861–873.
go back to reference Senkowski, D., Röttger, S., Grimm, S., Foxe, J. J., & Herrmann, C. S. (2005). Kanizsa subjective figures capture spatial attention: evidence from electrophysiological and behavioral data. Neuropsychologia, 43, 872–886.PubMedCrossRef Senkowski, D., Röttger, S., Grimm, S., Foxe, J. J., & Herrmann, C. S. (2005). Kanizsa subjective figures capture spatial attention: evidence from electrophysiological and behavioral data. Neuropsychologia, 43, 872–886.PubMedCrossRef
go back to reference Sheth, B. R., & Shimojo, S. (2001). Compression of space in visual memory. Vision Research, 41, 329–341.PubMedCrossRef Sheth, B. R., & Shimojo, S. (2001). Compression of space in visual memory. Vision Research, 41, 329–341.PubMedCrossRef
go back to reference Sheth, B. R., & Shimojo, S. (2004). Extrinsic cues suppress the encoding of intrinsic cues. Journal of Cognitive Neuroscience, 16, 339–350.PubMedCrossRef Sheth, B. R., & Shimojo, S. (2004). Extrinsic cues suppress the encoding of intrinsic cues. Journal of Cognitive Neuroscience, 16, 339–350.PubMedCrossRef
go back to reference Shim, W. M., & Cavanagh, P. (2004). The motion-induced position shift depends on the perceived direction of bistable quartet motion. Vision Research, 44, 2393–2401.PubMedCrossRef Shim, W. M., & Cavanagh, P. (2004). The motion-induced position shift depends on the perceived direction of bistable quartet motion. Vision Research, 44, 2393–2401.PubMedCrossRef
go back to reference Shim, W. M., & Cavanagh, P. (2005). Attentive tracking shifts the perceived location of a nearby flash. Vision Research, 45, 3253–3261.PubMedCrossRef Shim, W. M., & Cavanagh, P. (2005). Attentive tracking shifts the perceived location of a nearby flash. Vision Research, 45, 3253–3261.PubMedCrossRef
go back to reference Schlag, J., & Schlag-Rey, M. (1995). Illusory localization of stimuli flashed in the dark before saccades. Vision Research, 35, 2347–2357.PubMedCrossRef Schlag, J., & Schlag-Rey, M. (1995). Illusory localization of stimuli flashed in the dark before saccades. Vision Research, 35, 2347–2357.PubMedCrossRef
go back to reference Suzuki, S., & Cavanagh, P. (1997). Focused attention distorts visual space: An attentional repulsion effect. Journal of Experimental Psychology: Human Perception and Performance, 23, 443–463.PubMedCrossRef Suzuki, S., & Cavanagh, P. (1997). Focused attention distorts visual space: An attentional repulsion effect. Journal of Experimental Psychology: Human Perception and Performance, 23, 443–463.PubMedCrossRef
go back to reference Tsal, Y., & Bareket, T. (2005). Localization judgements under various levels of attention. Psychonomic Bulletin & Review, 12, 559–566. Tsal, Y., & Bareket, T. (2005). Localization judgements under various levels of attention. Psychonomic Bulletin & Review, 12, 559–566.
go back to reference Uddin, M. K., Kawabe, T., & Nakamizo, K. (2005a). Attention shift not memory averaging reduces foveal bias. Vision Research, 45, 3301–3306. CrossRef Uddin, M. K., Kawabe, T., & Nakamizo, K. (2005a). Attention shift not memory averaging reduces foveal bias. Vision Research, 45, 3301–3306. CrossRef
go back to reference Uddin, M. K., Kawabe, T., & Nakamizo, K. (2005b). Differential roles of distracters in reflexive and memory-based localization. Spatial Vision, 18, 579–592.CrossRef Uddin, M. K., Kawabe, T., & Nakamizo, K. (2005b). Differential roles of distracters in reflexive and memory-based localization. Spatial Vision, 18, 579–592.CrossRef
go back to reference Watt, R. J. (1988). Visual processing: Computational, psychophysical and cognitive research. London: Lawrence Erlbaum Associates. Watt, R. J. (1988). Visual processing: Computational, psychophysical and cognitive research. London: Lawrence Erlbaum Associates.
go back to reference Watt, R. J., & Morgan, M. J. (1985). A theory of the primitive spatial code in human vision. Vision Research, 25, 1661–1674.PubMedCrossRef Watt, R. J., & Morgan, M. J. (1985). A theory of the primitive spatial code in human vision. Vision Research, 25, 1661–1674.PubMedCrossRef
go back to reference Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt. Psychologishe Forschung, 4, 301–350.CrossRef Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt. Psychologishe Forschung, 4, 301–350.CrossRef
go back to reference Wolfe, J. M., O’Neil, P., & Bennet, S. C. (1998). Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception & Psychophysics, 60, 140–156. Wolfe, J. M., O’Neil, P., & Bennet, S. C. (1998). Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception & Psychophysics, 60, 140–156.
go back to reference Womelsdorf, T., Anton-Erxleben, K., Pieper, F., & Treue, S. (2006). Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nature Neuroscience, 9, 1156–1160.PubMedCrossRef Womelsdorf, T., Anton-Erxleben, K., Pieper, F., & Treue, S. (2006). Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nature Neuroscience, 9, 1156–1160.PubMedCrossRef
go back to reference Yantis, S., & Jonides J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601–621.PubMedCrossRef Yantis, S., & Jonides J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601–621.PubMedCrossRef
Metagegevens
Titel
Mislocalization of a target toward subjective contours: attentional modulation of location signals
Auteurs
Yuki Yamada
Takahiro Kawabe
Kayo Miura
Publicatiedatum
01-05-2008
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 3/2008
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-007-0109-3

Andere artikelen Uitgave 3/2008

Psychological Research 3/2008 Naar de uitgave