Skip to main content
Top
Gepubliceerd in:

16-11-2017

Measurement invariance of the WHOQOL-AGE questionnaire across three European countries

Auteurs: David Santos, Francisco J. Abad, Marta Miret, Somnath Chatterji, Beatriz Olaya, Katarzyna Zawisza, Seppo Koskinen, Matilde Leonardi, Josep Maria Haro, José Luis Ayuso-Mateos, Francisco Félix Caballero

Gepubliceerd in: Quality of Life Research | Uitgave 4/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

Developing valid and reliable instruments that can be used across countries is necessary. The present study aimed to test the comparability of quality of life scores across three European countries (Finland, Poland, and Spain).

Method

Data from 9987 participants interviewed between 2011 and 2012 were employed, using nationally representative samples from the Collaborative Research on Ageing in Europe project. The WHOQOL-AGE questionnaire is a 13-item test and was employed to assess the quality of life in the three considered countries. First of all, two models (a bifactor model and a two-correlated factor model) were proposed and tested in each country by means of confirmatory factor models. Second, measurement invariance across the three countries was tested using multi-group confirmatory factor analysis for that model which showed the best fit. Finally, differences in latent mean scores across countries were analyzed.

Results

The results indicated that the bifactor model showed more satisfactory goodness-of-fit indices than the two-correlated factor model and that the WHOQOL-AGE questionnaire is a partially scalar invariant instrument (only two items do not meet scalar invariance). Quality of life scores were higher in Finland (considered as the reference category: mean = 0, SD = 1) than in Spain (mean = − 0.547, SD = 1.22) and Poland (mean = − 0.927, SD = 1.26).

Conclusions

Respondents from Finland, Poland, and Spain attribute the same meaning to the latent construct studied, and differences across countries can be due to actual differences in quality of life. According to the results, the comparability across the different considered samples is supported and the WHOQOL-AGE showed an adequate validity in terms of cross-country validation. Caution should be exercised with the two items which did not meet scalar invariance, as potential indicator of differential item functioning.
Literatuur
1.
go back to reference World Health Organization. (1997). WHOQOL: Measuring quality of life. Geneva: World Health Organization. World Health Organization. (1997). WHOQOL: Measuring quality of life. Geneva: World Health Organization.
2.
go back to reference The WHOQOL Group. (1995). The World Health Organization quality of life assessment (WHOQOL): Position paper from the World Health Organization. Social Science & Medicine, 41(10), 1403–1409.CrossRef The WHOQOL Group. (1995). The World Health Organization quality of life assessment (WHOQOL): Position paper from the World Health Organization. Social Science & Medicine, 41(10), 1403–1409.CrossRef
3.
go back to reference The WHOQOL Group. (1996). What quality of life? World Health Organization quality of life assessment. World Health Forum, 17(4), 354–356. The WHOQOL Group. (1996). What quality of life? World Health Organization quality of life assessment. World Health Forum, 17(4), 354–356.
4.
go back to reference Skevington, S. M. (2002). Advancing cross-cultural research on quality of life: observations drawn from the WHOQOL development. Quality of Life Research, 11(2), 135–144.CrossRefPubMed Skevington, S. M. (2002). Advancing cross-cultural research on quality of life: observations drawn from the WHOQOL development. Quality of Life Research, 11(2), 135–144.CrossRefPubMed
5.
go back to reference The WHOQOL Group. (1998). The World Health Organization quality of life assessment (WHOQOL): Development and general psychometric properties. Social Science & Medicine, 46(12), 1569–1585.CrossRef The WHOQOL Group. (1998). The World Health Organization quality of life assessment (WHOQOL): Development and general psychometric properties. Social Science & Medicine, 46(12), 1569–1585.CrossRef
6.
go back to reference The WHOQOL Group (1998). Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychological Medicine, 28(03), 551–558.CrossRef The WHOQOL Group (1998). Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychological Medicine, 28(03), 551–558.CrossRef
7.
go back to reference Skevington, S. M., Lotfy, M., & O’Connell, K. A. (2004). The World Health Organization’s WHOQOL-BREF quality of life assessment: Psychometric properties and results of the international field trial. A report from the WHOQOL group. Quality of Life Research, 13(2), 299–310.CrossRefPubMed Skevington, S. M., Lotfy, M., & O’Connell, K. A. (2004). The World Health Organization’s WHOQOL-BREF quality of life assessment: Psychometric properties and results of the international field trial. A report from the WHOQOL group. Quality of Life Research, 13(2), 299–310.CrossRefPubMed
8.
go back to reference Power, M., Quinn, K., & Schmidt, S. (2005). Development of the WHOQOL-old module. Quality of Life Research, 14(10), 2197–2214.CrossRefPubMed Power, M., Quinn, K., & Schmidt, S. (2005). Development of the WHOQOL-old module. Quality of Life Research, 14(10), 2197–2214.CrossRefPubMed
9.
go back to reference Schmidt, S., Mühlan, H., & Power, M. (2006). The EUROHIS-QOL 8-item index: psychometric results of a cross-cultural field study. The European Journal of Public Health, 16(4), 420–428.CrossRefPubMed Schmidt, S., Mühlan, H., & Power, M. (2006). The EUROHIS-QOL 8-item index: psychometric results of a cross-cultural field study. The European Journal of Public Health, 16(4), 420–428.CrossRefPubMed
10.
go back to reference Fang, J., Power, M., Lin, Y., Zhang, J., Hao, Y., & Chatterji, S. (2012). Development of short versions for the WHOQOL-OLD module. The Gerontologist, 52(1), 66–78.CrossRefPubMed Fang, J., Power, M., Lin, Y., Zhang, J., Hao, Y., & Chatterji, S. (2012). Development of short versions for the WHOQOL-OLD module. The Gerontologist, 52(1), 66–78.CrossRefPubMed
11.
go back to reference Leonardi, M., Chatterji, S., Koskinen, S., Ayuso-Mateos, J. L., Haro, J. M., Frisoni, G., et al. (2014). Determinants of health and disability in ageing population:the COURAGE in Europe project (Collaborative Research on Ageing in Europe). Clinical Psychology & Psychotherapy, 21(3), 193–198.CrossRef Leonardi, M., Chatterji, S., Koskinen, S., Ayuso-Mateos, J. L., Haro, J. M., Frisoni, G., et al. (2014). Determinants of health and disability in ageing population:the COURAGE in Europe project (Collaborative Research on Ageing in Europe). Clinical Psychology & Psychotherapy, 21(3), 193–198.CrossRef
12.
go back to reference Caballero, F. F., Miret, M., Power, M., Chatterji, S., Tobiasz-Adamczyk, B., Koskinen, S., et al. (2013). Validation of an instrument to evaluate quality of life in the aging population: WHOQOL-AGE. Health and Quality of Life Outcomes, 11, 177.CrossRefPubMedCentralPubMed Caballero, F. F., Miret, M., Power, M., Chatterji, S., Tobiasz-Adamczyk, B., Koskinen, S., et al. (2013). Validation of an instrument to evaluate quality of life in the aging population: WHOQOL-AGE. Health and Quality of Life Outcomes, 11, 177.CrossRefPubMedCentralPubMed
13.
go back to reference Meredith, W. (1993). Measurement invariance, factor analysis, and factorial invariance. Pyschometrika, 58, 525–543.CrossRef Meredith, W. (1993). Measurement invariance, factor analysis, and factorial invariance. Pyschometrika, 58, 525–543.CrossRef
14.
go back to reference Meredith, W., & Millsap, R. E. (1992). On the misuse of manifest variables in the detection of measurement bias. Psychometrika, 57(2), 289–311.CrossRef Meredith, W., & Millsap, R. E. (1992). On the misuse of manifest variables in the detection of measurement bias. Psychometrika, 57(2), 289–311.CrossRef
15.
go back to reference Miret, M., Caballero, F. F., Chatterji, S., Olaya, B., Tobiasz-Adamczyk, B., Koskinen, S., et al. (2014). Health and happiness: cross-sectional household surveys in Finland, Poland and Spain. Bulletin of the World Health Organization, 92(10), 716–725.CrossRefPubMedCentralPubMed Miret, M., Caballero, F. F., Chatterji, S., Olaya, B., Tobiasz-Adamczyk, B., Koskinen, S., et al. (2014). Health and happiness: cross-sectional household surveys in Finland, Poland and Spain. Bulletin of the World Health Organization, 92(10), 716–725.CrossRefPubMedCentralPubMed
17.
go back to reference Rey, J. J., Abad, F. J., Barrada, J. R., Garrido, L. E., & Ponsoda, V. (2014). The impact of ambiguous response categories on the factor structure of the GHQ–12. Psychological Assessment, 26(3), 1021–1030.CrossRefPubMed Rey, J. J., Abad, F. J., Barrada, J. R., Garrido, L. E., & Ponsoda, V. (2014). The impact of ambiguous response categories on the factor structure of the GHQ–12. Psychological Assessment, 26(3), 1021–1030.CrossRefPubMed
18.
go back to reference Schweizer, K., & Schreiner, M. (2010). Avoiding the effect of item wording by means of bipolar instead of unipolar items: An application to social optimism. European Journal of Personality, 24(2), 137–150. Schweizer, K., & Schreiner, M. (2010). Avoiding the effect of item wording by means of bipolar instead of unipolar items: An application to social optimism. European Journal of Personality, 24(2), 137–150.
19.
go back to reference Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum.
20.
go back to reference Fayers, P. M., Hand, D. J., Bjordal, K., & Groenvold, M. (1997). Causal indicators in quality of life research. Quality of Life Research, 6(5), 393–406.CrossRefPubMed Fayers, P. M., Hand, D. J., Bjordal, K., & Groenvold, M. (1997). Causal indicators in quality of life research. Quality of Life Research, 6(5), 393–406.CrossRefPubMed
21.
go back to reference Fayers, P. M., & Hand, D. J. (2002). Causal variables, indicator variables and measurement scales: an example from quality of life. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(2), 233–253.CrossRef Fayers, P. M., & Hand, D. J. (2002). Causal variables, indicator variables and measurement scales: an example from quality of life. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(2), 233–253.CrossRef
22.
go back to reference Fayers, P. M., & Hand, D. J. (1997). Factor analysis, causal indicators and quality of life. Quality of Life Research, 6, 139–150.PubMed Fayers, P. M., & Hand, D. J. (1997). Factor analysis, causal indicators and quality of life. Quality of Life Research, 6, 139–150.PubMed
23.
go back to reference Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92, 544–559.CrossRefPubMedCentralPubMed Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92, 544–559.CrossRefPubMedCentralPubMed
24.
go back to reference Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(1), 19–31.CrossRefPubMed Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(1), 19–31.CrossRefPubMed
25.
go back to reference Hox, J. J., Mass, C. J. M., & Brinkhuis, J. S. (2010). The effect of estimation method and sample size in multilevel structural equation modeling. Statistica Neerlandica, 64, 157–170.CrossRef Hox, J. J., Mass, C. J. M., & Brinkhuis, J. S. (2010). The effect of estimation method and sample size in multilevel structural equation modeling. Statistica Neerlandica, 64, 157–170.CrossRef
26.
go back to reference Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRef Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRef
27.
go back to reference Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance. Psychological Bulletin, 114(3), 552–566.CrossRefPubMed Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance. Psychological Bulletin, 114(3), 552–566.CrossRefPubMed
28.
go back to reference Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions On Automatic Control, 19, 716–723.CrossRef Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions On Automatic Control, 19, 716–723.CrossRef
29.
go back to reference Gregorich, S. E. (2006). Do self-report instruments allow meaningful comparisons across diverse population groups? Testing measurement invariance using the confirmatory factor analysis framework. MedicalCare, 44(11 Suppl 3), S78–S94. Gregorich, S. E. (2006). Do self-report instruments allow meaningful comparisons across diverse population groups? Testing measurement invariance using the confirmatory factor analysis framework. MedicalCare, 44(11 Suppl 3), S78–S94.
30.
go back to reference van de Schoot, R., Lugtig, P., & Hox, J. (2012). A checklist for testing measurement invariance. European Journal of Developmental Psychology, 9(4), 486–492.CrossRef van de Schoot, R., Lugtig, P., & Hox, J. (2012). A checklist for testing measurement invariance. European Journal of Developmental Psychology, 9(4), 486–492.CrossRef
31.
go back to reference Emerson, S. D., Guhn, M., & Gadermann, A. M. (2017). Measurement invariance of the Satisfaction with Life Scale: Reviewing three decades of research. Quality of Life Research, 26(9) 1–14.CrossRef Emerson, S. D., Guhn, M., & Gadermann, A. M. (2017). Measurement invariance of the Satisfaction with Life Scale: Reviewing three decades of research. Quality of Life Research, 26(9) 1–14.CrossRef
32.
go back to reference Yoon, M., & Millsap, R. E. (2007). Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study. Structural Equation Modeling, 14(3), 435–463.CrossRef Yoon, M., & Millsap, R. E. (2007). Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study. Structural Equation Modeling, 14(3), 435–463.CrossRef
33.
go back to reference Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255.CrossRef Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255.CrossRef
34.
go back to reference Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 3(105), 456–466.CrossRef Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 3(105), 456–466.CrossRef
35.
go back to reference Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61(4), 532–574.CrossRef Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61(4), 532–574.CrossRef
36.
go back to reference Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20(8), 1–24.CrossRef Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20(8), 1–24.CrossRef
37.
go back to reference Muthén, L. K., & Muthén, B. O. (2010). Mplus user’s guide: Statistical analysis with latent variables: User’s guide. Los Angeles: Muthén & Muthén. Muthén, L. K., & Muthén, B. O. (2010). Mplus user’s guide: Statistical analysis with latent variables: User’s guide. Los Angeles: Muthén & Muthén.
38.
go back to reference StataCorp (2011). Stata statistical software: Release 12. College Station, TX: StataCorp LP. StataCorp (2011). Stata statistical software: Release 12. College Station, TX: StataCorp LP.
39.
go back to reference Streiner, D. L. (2003). Being inconsistent about consistency: When coefficient alpha does and doesn’t matter. Journal of Personality Assessment, 80(3), 217–222.CrossRefPubMed Streiner, D. L. (2003). Being inconsistent about consistency: When coefficient alpha does and doesn’t matter. Journal of Personality Assessment, 80(3), 217–222.CrossRefPubMed
41.
go back to reference Eikemo, T. A., Huisman, M., Bambra, C., & Kunst, A. E. (2008). Health inequalities according to educational level in different welfare regimes: A comparison of 23 European countries. Sociology of health & Illness, 30(4), 565–582.CrossRef Eikemo, T. A., Huisman, M., Bambra, C., & Kunst, A. E. (2008). Health inequalities according to educational level in different welfare regimes: A comparison of 23 European countries. Sociology of health & Illness, 30(4), 565–582.CrossRef
42.
go back to reference Abad, F. J., Sorrel, M. A., Román, F. J., & Colom, R. (2016). The relationships between WAIS-IV factor index scores and educational level: A bifactor model approach. Psychological Assessment, 28(8), 987–1000.CrossRefPubMed Abad, F. J., Sorrel, M. A., Román, F. J., & Colom, R. (2016). The relationships between WAIS-IV factor index scores and educational level: A bifactor model approach. Psychological Assessment, 28(8), 987–1000.CrossRefPubMed
43.
go back to reference Mellor-Marsá, B., Miret, M., Abad, F. J., Chatterji, S., Olaya, B., Tobiasz-Adamczyk, B., et al. (2016). Measurement invariance of the day reconstruction method: Results from the COURAGE in Europe project. Journal of Happiness Studies, 17(5), 1769–1787.CrossRef Mellor-Marsá, B., Miret, M., Abad, F. J., Chatterji, S., Olaya, B., Tobiasz-Adamczyk, B., et al. (2016). Measurement invariance of the day reconstruction method: Results from the COURAGE in Europe project. Journal of Happiness Studies, 17(5), 1769–1787.CrossRef
44.
go back to reference Sass, D. A., Schmitt, T. A., & Marsh, H. W. (2014). Evaluating model fit with ordered categorical data within a measurement invariance framework: A comparison of estimators. Structural Equation Modeling: A Multidisciplinary Journal, 21(2), 167–180.CrossRef Sass, D. A., Schmitt, T. A., & Marsh, H. W. (2014). Evaluating model fit with ordered categorical data within a measurement invariance framework: A comparison of estimators. Structural Equation Modeling: A Multidisciplinary Journal, 21(2), 167–180.CrossRef
45.
go back to reference Millsap, R. E. (2011). Statistical Approaches to Measurement Invariance. New York: Routledge. Millsap, R. E. (2011). Statistical Approaches to Measurement Invariance. New York: Routledge.
46.
go back to reference Xia, Y. (2016). Investigating the chi-square-based model-fit indexes for WLSMV and ULSMV estimators. Doctoral dissertation, The Florida State University. Xia, Y. (2016). Investigating the chi-square-based model-fit indexes for WLSMV and ULSMV estimators. Doctoral dissertation, The Florida State University.
47.
go back to reference Lara, E., Koyanagi, A., Caballero, F., Domènech-Abella, J., Miret, M., Olaya, B., et al. (2017). Cognitive reserve is associated with quality of life: A population-based study. Experimental Gerontology, 87, 67–73.CrossRefPubMed Lara, E., Koyanagi, A., Caballero, F., Domènech-Abella, J., Miret, M., Olaya, B., et al. (2017). Cognitive reserve is associated with quality of life: A population-based study. Experimental Gerontology, 87, 67–73.CrossRefPubMed
48.
go back to reference Raggi, A., Corso, B., Minicuci, N., Quintas, R., Sattin, D., De Torres, L., et al. (2016). Determinants of quality of life in ageing populations: Results from a cross-sectional study in Finland, Poland and Spain. PLoS ONE, 11(7), e0159293.CrossRefPubMedCentralPubMed Raggi, A., Corso, B., Minicuci, N., Quintas, R., Sattin, D., De Torres, L., et al. (2016). Determinants of quality of life in ageing populations: Results from a cross-sectional study in Finland, Poland and Spain. PLoS ONE, 11(7), e0159293.CrossRefPubMedCentralPubMed
49.
go back to reference Garin, N., Olaya, B., Moneta, M. V., Miret, M., Lobo, A., Ayuso-Mateos, J. L., & Haro, J. M. (2014). Impact of multimorbidity on disability and quality of life in the Spanish older population. PLoS ONE, 9(11), e111498.CrossRefPubMedCentralPubMed Garin, N., Olaya, B., Moneta, M. V., Miret, M., Lobo, A., Ayuso-Mateos, J. L., & Haro, J. M. (2014). Impact of multimorbidity on disability and quality of life in the Spanish older population. PLoS ONE, 9(11), e111498.CrossRefPubMedCentralPubMed
50.
go back to reference Snell, D. L., Siegert, R. J., Surgenor, L. J., Dunn, J. A., & Hooper, G. J. (2016). Evaluating quality of life outcomes following joint replacement: Psychometric evaluation of a short form of the WHOQOL-Bref. Quality of Life Research, 25(1), 51–61.CrossRefPubMed Snell, D. L., Siegert, R. J., Surgenor, L. J., Dunn, J. A., & Hooper, G. J. (2016). Evaluating quality of life outcomes following joint replacement: Psychometric evaluation of a short form of the WHOQOL-Bref. Quality of Life Research, 25(1), 51–61.CrossRefPubMed
51.
go back to reference Torisson, G., Stavenow, L., Minthon, L., & Londos, E. (2016). Reliability, validity and clinical correlates of the Quality of Life in Alzheimer’s disease (QoL-AD) scale in medical inpatients. Health and Quality of Life Outcomes, 14, 90.CrossRefPubMedCentralPubMed Torisson, G., Stavenow, L., Minthon, L., & Londos, E. (2016). Reliability, validity and clinical correlates of the Quality of Life in Alzheimer’s disease (QoL-AD) scale in medical inpatients. Health and Quality of Life Outcomes, 14, 90.CrossRefPubMedCentralPubMed
Metagegevens
Titel
Measurement invariance of the WHOQOL-AGE questionnaire across three European countries
Auteurs
David Santos
Francisco J. Abad
Marta Miret
Somnath Chatterji
Beatriz Olaya
Katarzyna Zawisza
Seppo Koskinen
Matilde Leonardi
Josep Maria Haro
José Luis Ayuso-Mateos
Francisco Félix Caballero
Publicatiedatum
16-11-2017
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 4/2018
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-017-1737-8