Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2008

01-03-2008 | Original Article

Laterally focused attention modulates asymmetric coupling in rhythmic interlimb coordination

Auteurs: Harjo J. de Poel, C. (Lieke) E. Peper, Peter J. Beek

Gepubliceerd in: Psychological Research | Uitgave 2/2008

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Peters (J Motor Behav 21:151–155, 1989; Interlimb coordination: neural, dynamical and cognitive constraints, Academic, Orlando, pp 595–615, 1994) suggested that expressions of handedness in bimanual coordination may be reflections of an inherent attentional bias. Indeed, previous results indicated that focusing attention on one of the limbs affected the relative phasing between the limbs in a manner comparable to the effects of hand dominance. The present study extended the comparison between the effects of attentional focus and handedness by testing their impact on the interactions between the limbs. Both left-handed and right-handed participants performed rhythmic bimanual coordination tasks (in-phase and antiphase coordination), while directing attention to either limb. Using brief mechanical perturbations, the degree to which the limbs were influenced by each other was determined. The results revealed that the non-dominant limb was more strongly affected by the dominant limb than vice versa and that, in line with Peters’ proposition, this handedness-related asymmetry in coupling strength was reduced when attention was focused on the non-dominant limb, thereby highlighting the potential relation between inherent (handedness-related) asymmetries and voluntary attentional asymmetries. In contrast to previous findings, the (commonly observed) phase lead of the dominant limb was attenuated (rather than accrued) when attention was focused on this limb. This unexpected result was explained in terms of the observed attention-related difference in amplitude between the limbs.
Voetnoten
1
Note that the handedness-related asymmetries in interlimb coupling strength may be altered when additional task-related differences between the limbs are introduced. For instance, it has been shown for non-mirror-symmetric bimanual circle drawing that the direction of circling determines which limb tends to lead (Franz, Rowse, & Ballentine, 2002) and that, when tapping two unequal rhythms, the faster tapping hand influences the slower hand more strongly than vice versa (e.g., Byblow et al., 1998; Peper, Beek, & Van Wieringen, 1995a; Summers et al., 2002), even though in the latter case handedness-related effects are still noticeable (Byblow et al., 1998; Summers et al., 2002).
 
2
The exclusion of one LH participant following a more stringent selection criterion (i.e., |LQ| > 70, cf. De Poel et al., in press) yielded qualitatively similar results.
 
3
Inclusion of the attentionally neutral condition in the ANOVA for the 12 participants that also participated in the experiment by De Poel et al. (in press; see previous section) also revealed a main effect of attention, F(1, 20) = 12.13, p < 0.001, f = 1.10. Post hoc simple effects analyses revealed that directing attention towards the D limb (mean Δφ = 0.8°) decreased the D limb phase lead when compared to the neutral condition (mean Δφ = 2.7°), F(1, 10) = 8.43, p < 0.05, f = 0.95, whereas the increase that was observed when attention was directed to the ND limb (mean Δφ = 4.5°) did not reach significance.
 
4
Cycle amplitude (in degrees) was defined as the average of the half-cycle peak-to-peak excursions, divided by 2. Since we were specifically interested in the effect of attention on the difference in amplitude of both arm movements, the values were averaged over coordination mode and frequency conditions.
 
5
Given this relation, it is useful to emphasize that the observed D limb phase lead was not related to an amplitude difference, because the ANOVA on mean angular amplitude did not reveal a main effect of arm (D, ND). Moreover, re-analysis of the attentionally neutral condition (as obtained by De Poel et al., in press) also revealed no significant difference between the amplitudes of the D and ND arm.
 
Literatuur
go back to reference Amazeen, E. L., Amazeen, P. G., Treffner, P. J., & Turvey, M. T. (1997). Attention and handedness in bimanual coordination dynamics. Journal of Experimental Psychology: Human Perception and Performance, 23, 1552–1560.CrossRef Amazeen, E. L., Amazeen, P. G., Treffner, P. J., & Turvey, M. T. (1997). Attention and handedness in bimanual coordination dynamics. Journal of Experimental Psychology: Human Perception and Performance, 23, 1552–1560.CrossRef
go back to reference Amazeen, E. L., Ringenbach, S. D., & Amazeen, P. G. (2005). The effects of attention and handedness on coordination dynamics in a bimanual Fitts’ law task. Experimental Brain Research, 164, 484–499.CrossRef Amazeen, E. L., Ringenbach, S. D., & Amazeen, P. G. (2005). The effects of attention and handedness on coordination dynamics in a bimanual Fitts’ law task. Experimental Brain Research, 164, 484–499.CrossRef
go back to reference Bardy, B. G., Oullier, O., Bootsma, R. J., & Stoffregen, T. A. (2002). Dynamics of human postural transitions. Journal of Experimental Psychology: Human Perception and Performance, 28, 499–514.PubMedCrossRef Bardy, B. G., Oullier, O., Bootsma, R. J., & Stoffregen, T. A. (2002). Dynamics of human postural transitions. Journal of Experimental Psychology: Human Perception and Performance, 28, 499–514.PubMedCrossRef
go back to reference Beek, P. J., & Beek, W. J. (1988). Tools for constructing dynamical models of rhythmic movement. Human Movement Science, 7, 301–342.CrossRef Beek, P. J., & Beek, W. J. (1988). Tools for constructing dynamical models of rhythmic movement. Human Movement Science, 7, 301–342.CrossRef
go back to reference Beek, P. J., Rikkert, W. E. I., & Van Wieringen, P. C. W. (1996). Limit cycle properties of rhythmic forearm movements. Journal of Experimental Psychology: Human Perception and Performance, 22, 1077–1093.CrossRef Beek, P. J., Rikkert, W. E. I., & Van Wieringen, P. C. W. (1996). Limit cycle properties of rhythmic forearm movements. Journal of Experimental Psychology: Human Perception and Performance, 22, 1077–1093.CrossRef
go back to reference Buchanan, J. J., & Ryu, Y. U. (2006). One-to-one and polyrhythmic temporal coordination in bimanual circle tracing. Journal of Motor behavior, 38, 163–184.PubMedCrossRef Buchanan, J. J., & Ryu, Y. U. (2006). One-to-one and polyrhythmic temporal coordination in bimanual circle tracing. Journal of Motor behavior, 38, 163–184.PubMedCrossRef
go back to reference Byblow, W. D., Bysouth-Young, D., Summers, J. J., & Carson, R. G. (1998). Performance asymmetries and coupling dynamics in the acquisition of multifrequency bimanual coordination. Psychological Research/ Psychologische Forschung, 61, 56–70.CrossRef Byblow, W. D., Bysouth-Young, D., Summers, J. J., & Carson, R. G. (1998). Performance asymmetries and coupling dynamics in the acquisition of multifrequency bimanual coordination. Psychological Research/ Psychologische Forschung, 61, 56–70.CrossRef
go back to reference Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3–28.CrossRef Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3–28.CrossRef
go back to reference Byblow, W. D., Chua, R., & Goodman, D. (1995). Asymmetries in coupling dynamics of perception and action. Journal of Motor Behavior, 27, 123–137.PubMedCrossRef Byblow, W. D., Chua, R., & Goodman, D. (1995). Asymmetries in coupling dynamics of perception and action. Journal of Motor Behavior, 27, 123–137.PubMedCrossRef
go back to reference Byblow, W. D., Lewis, G. N., Stinear, J. W., Austin, N. J., & Lynch, M. (2000). The subdominant hand increases the efficacy of voluntary alterations in bimanual coordination. Experimental Brain Research, 131, 366–374.CrossRef Byblow, W. D., Lewis, G. N., Stinear, J. W., Austin, N. J., & Lynch, M. (2000). The subdominant hand increases the efficacy of voluntary alterations in bimanual coordination. Experimental Brain Research, 131, 366–374.CrossRef
go back to reference Byblow, W. D., Summers, J. J., Semjen, A., Wuyts, I. J., & Carson, R. G. (1999). Spontaneous and intentional pattern switching in a multisegmental bimanual coordination task. Motor Control, 3, 372–393.PubMed Byblow, W. D., Summers, J. J., Semjen, A., Wuyts, I. J., & Carson, R. G. (1999). Spontaneous and intentional pattern switching in a multisegmental bimanual coordination task. Motor Control, 3, 372–393.PubMed
go back to reference Carson, R. G. (1993). Manual asymmetries: Old problems and new directions. Human Movement Science, 12, 479–506.CrossRef Carson, R. G. (1993). Manual asymmetries: Old problems and new directions. Human Movement Science, 12, 479–506.CrossRef
go back to reference Carson, R. G., Byblow, W. D., Abernethy, B., & Summers, J. J. (1996). The contribution of inherent and incidental constraints to intentional switching between patterns of bimanual coordination. Human Movement Science, 15, 565–589.CrossRef Carson, R. G., Byblow, W. D., Abernethy, B., & Summers, J. J. (1996). The contribution of inherent and incidental constraints to intentional switching between patterns of bimanual coordination. Human Movement Science, 15, 565–589.CrossRef
go back to reference Cohen J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates. Cohen J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.
go back to reference Court, M. L. J., Bennett, S. J., Williams, A. M., & Davids, K. (2002). Local stability in coordinated rhythmic movements: Fluctuations and relaxation times. Human Movement Science, 21, 39–60.PubMedCrossRef Court, M. L. J., Bennett, S. J., Williams, A. M., & Davids, K. (2002). Local stability in coordinated rhythmic movements: Fluctuations and relaxation times. Human Movement Science, 21, 39–60.PubMedCrossRef
go back to reference Daffertshofer, A., Van Den Berg, C., & Beek, P. J. (1999). A dynamical model for mirror movements. Physica D, 132, 243–266.CrossRef Daffertshofer, A., Van Den Berg, C., & Beek, P. J. (1999). A dynamical model for mirror movements. Physica D, 132, 243–266.CrossRef
go back to reference Dassonville, P., Zhu, X. H., Ugurbil, K., Kim, S. G., & Ashe, J. (1997). Functional activation in motor cortex reflects the direction and the degree of handedness. Proceedings of the National Academy of Sciences of the United States of America, 94, 14015–14018.PubMedCrossRef Dassonville, P., Zhu, X. H., Ugurbil, K., Kim, S. G., & Ashe, J. (1997). Functional activation in motor cortex reflects the direction and the degree of handedness. Proceedings of the National Academy of Sciences of the United States of America, 94, 14015–14018.PubMedCrossRef
go back to reference De Gennaro, L., Cristiani, R., Bertini, M., Curcio, G., Ferrara, M., Fratello, F., et al. (2004). Handedness is mainly associated with an asymmetry of corticospinal excitability and not of transcallosal inhibition. Clinical Neurophysiology, 115, 1305–1312.PubMedCrossRef De Gennaro, L., Cristiani, R., Bertini, M., Curcio, G., Ferrara, M., Fratello, F., et al. (2004). Handedness is mainly associated with an asymmetry of corticospinal excitability and not of transcallosal inhibition. Clinical Neurophysiology, 115, 1305–1312.PubMedCrossRef
go back to reference De Poel, H. J., Peper, C. E., & Beek, P. J. (2006). Intentional switches between bimanual coordination patterns are primarily effectuated by the nondominant hand. Motor Control, 10, 7–23.PubMed De Poel, H. J., Peper, C. E., & Beek, P. J. (2006). Intentional switches between bimanual coordination patterns are primarily effectuated by the nondominant hand. Motor Control, 10, 7–23.PubMed
go back to reference De Poel, H. J., Peper, C. E., & Beek, P. J. (in press). Handedness-related asymmetry in coupling strength in bimanual coordination: Furthering theory and evidence. Acta Psychologica. De Poel, H. J., Peper, C. E., & Beek, P. J. (in press). Handedness-related asymmetry in coupling strength in bimanual coordination: Furthering theory and evidence. Acta Psychologica.
go back to reference Franz, E. A. (2004). Attentional distribution of task parameters to the two hands during bimanual performance of right- and left-handers. Journal of Motor Behavior, 36, 71–81.PubMedCrossRef Franz, E. A. (2004). Attentional distribution of task parameters to the two hands during bimanual performance of right- and left-handers. Journal of Motor Behavior, 36, 71–81.PubMedCrossRef
go back to reference Franz, E. A., Rowse, A., & Ballantine, B. (2002). Does handedness determine which hand leads in a bimanual task? Journal of Motor Behavior, 34, 402–412.PubMedCrossRef Franz, E. A., Rowse, A., & Ballantine, B. (2002). Does handedness determine which hand leads in a bimanual task? Journal of Motor Behavior, 34, 402–412.PubMedCrossRef
go back to reference Fuchs, A., Jirsa, V. K., Haken, H., & Kelso, J. A. S. (1996). Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biological Cybernetics, 74, 21–30.PubMedCrossRef Fuchs, A., Jirsa, V. K., Haken, H., & Kelso, J. A. S. (1996). Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biological Cybernetics, 74, 21–30.PubMedCrossRef
go back to reference Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action: The kinematic chain as a model. Journal of Motor Behavior, 19, 486–517.PubMed Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action: The kinematic chain as a model. Journal of Motor Behavior, 19, 486–517.PubMed
go back to reference Haaland, K. Y., & Harrington, D. L. (1996). Hemispheric asymmetry of movement. Current Opinion in Neurobiology, 6, 796–800.PubMedCrossRef Haaland, K. Y., & Harrington, D. L. (1996). Hemispheric asymmetry of movement. Current Opinion in Neurobiology, 6, 796–800.PubMedCrossRef
go back to reference Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.PubMedCrossRef Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.PubMedCrossRef
go back to reference Hatsopoulos, N. G., & Warren, W. H. (1996). Resonance tuning in rhythmic arm movements. Journal of Motor Behavior, 28, 3–14.PubMed Hatsopoulos, N. G., & Warren, W. H. (1996). Resonance tuning in rhythmic arm movements. Journal of Motor Behavior, 28, 3–14.PubMed
go back to reference Heuer, H., & Klein, W. (2005). Intermanual interactions in discrete and periodic bimanual movements with same and different amplitudes. Experimental Brain Research, 167, 220–237.CrossRef Heuer, H., & Klein, W. (2005). Intermanual interactions in discrete and periodic bimanual movements with same and different amplitudes. Experimental Brain Research, 167, 220–237.CrossRef
go back to reference Jancke, J., Peters, M., Schlaug, G., Posse, S., Steinmetz, H., & Müller-Gartner, H. W. (1998). Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Cognitive Brain Research, 6, 279–284.PubMedCrossRef Jancke, J., Peters, M., Schlaug, G., Posse, S., Steinmetz, H., & Müller-Gartner, H. W. (1998). Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Cognitive Brain Research, 6, 279–284.PubMedCrossRef
go back to reference Jeka, J. J., & Kelso, J. A. S. (1995). Manipulating symmetry in the coordination dynamics of human movement. Journal of Experimental Psychology: Human Perception and Performance, 21, 360–374.PubMedCrossRef Jeka, J. J., & Kelso, J. A. S. (1995). Manipulating symmetry in the coordination dynamics of human movement. Journal of Experimental Psychology: Human Perception and Performance, 21, 360–374.PubMedCrossRef
go back to reference Johansen-Berg, H., & Matthews, P. M. (2002). Attention to movement modulates activity in sensori-motor areas, including primary motor cortex. Experimental Brain Research, 142, 13–24.CrossRef Johansen-Berg, H., & Matthews, P. M. (2002). Attention to movement modulates activity in sensori-motor areas, including primary motor cortex. Experimental Brain Research, 142, 13–24.CrossRef
go back to reference Kay, B. A., Kelso, J. A. S., Saltzman, E. L., & Schöner, G. (1987). Space-time behavior of single and bimanual rhythmical movements: Data and limit cycle model. Journal of Experimental Psychology: Human Perception and Performance, 13, 178–192.PubMedCrossRef Kay, B. A., Kelso, J. A. S., Saltzman, E. L., & Schöner, G. (1987). Space-time behavior of single and bimanual rhythmical movements: Data and limit cycle model. Journal of Experimental Psychology: Human Perception and Performance, 13, 178–192.PubMedCrossRef
go back to reference Kay, B. A., Saltzman, E. L., & Kelso, J. A. S. (1991). Steady-state and perturbed rhythmical movements: A dynamical analysis. Journal of Experimental Psychology: Human Perception and Performance, 17, 183–197.PubMedCrossRef Kay, B. A., Saltzman, E. L., & Kelso, J. A. S. (1991). Steady-state and perturbed rhythmical movements: A dynamical analysis. Journal of Experimental Psychology: Human Perception and Performance, 17, 183–197.PubMedCrossRef
go back to reference Kelso, J. A. S., DelColle, J. D., & Schöner, G. (1990). Action-perception as a pattern formation process. In M. Jeannerod (Ed.), Attention and performance XIII: Motor representation and control (pp. 139–169). Hillsdale: Erlbaum. Kelso, J. A. S., DelColle, J. D., & Schöner, G. (1990). Action-perception as a pattern formation process. In M. Jeannerod (Ed.), Attention and performance XIII: Motor representation and control (pp. 139–169). Hillsdale: Erlbaum.
go back to reference Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT press. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT press.
go back to reference Keppel, G. (1991). Design and analysis: A researcher's handbook (3rd edn.). Upper Saddle River: Prentice-Hall. Keppel, G. (1991). Design and analysis: A researcher's handbook (3rd edn.). Upper Saddle River: Prentice-Hall.
go back to reference Kim, S. G., Ashe, J., Hendrich, K., Ellermann, J. M., Merkle, H., Ugurbil, K., et al. (1993). Functional magnetic-resonance-imaging of motor cortex: hemispheric asymmetry and handedness. Science, 261, 615–617.PubMedCrossRef Kim, S. G., Ashe, J., Hendrich, K., Ellermann, J. M., Merkle, H., Ugurbil, K., et al. (1993). Functional magnetic-resonance-imaging of motor cortex: hemispheric asymmetry and handedness. Science, 261, 615–617.PubMedCrossRef
go back to reference Mardia, K. V. (1972). Statistics of directional data. London: Academic. Mardia, K. V. (1972). Statistics of directional data. London: Academic.
go back to reference Mottet, D., & Bootsma, R. J. (1999). The dynamics of goal-directed rhythmical aiming. Biological Cybernetics, 80, 235–245.PubMedCrossRef Mottet, D., & Bootsma, R. J. (1999). The dynamics of goal-directed rhythmical aiming. Biological Cybernetics, 80, 235–245.PubMedCrossRef
go back to reference Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRef Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRef
go back to reference Pellegrini, A. M., Andrade, E. C., & Teixeira, L. A. (2004). Attending to the non-preferred hand improves bimanual coordination in children. Human Movement Science, 23, 447–460.PubMedCrossRef Pellegrini, A. M., Andrade, E. C., & Teixeira, L. A. (2004). Attending to the non-preferred hand improves bimanual coordination in children. Human Movement Science, 23, 447–460.PubMedCrossRef
go back to reference Peper, C. E., Beek, P. J., & Van Wieringen, P. C. W. (1995a). Coupling strength in tapping a 2:3 polyrhythm. Human Movement Science, 14, 217–245.CrossRef Peper, C. E., Beek, P. J., & Van Wieringen, P. C. W. (1995a). Coupling strength in tapping a 2:3 polyrhythm. Human Movement Science, 14, 217–245.CrossRef
go back to reference Peper, C. E., Beek, P. J., & Van Wieringen, P. C. W. (1995b). Multifrequency coordination in bimanual tapping: Asymmetrical coupling and signs of supercriticality. Journal of Experimental Psychology: Human Perception and Performance, 21, 1117–1138.CrossRef Peper, C. E., Beek, P. J., & Van Wieringen, P. C. W. (1995b). Multifrequency coordination in bimanual tapping: Asymmetrical coupling and signs of supercriticality. Journal of Experimental Psychology: Human Perception and Performance, 21, 1117–1138.CrossRef
go back to reference Peper, C. E., Daffertshofer, A., & Beek, P. J. (2004a). Dynamical models of rhythmic interlimb coordination: Relating pattern (in)stability to neural processes and effector properties. In S. Swinnen, & J. Duysens (Eds.), Neuro-behavioral determinants of interlimb coordination. Amsterdam: Kluwer. Peper, C. E., Daffertshofer, A., & Beek, P. J. (2004a). Dynamical models of rhythmic interlimb coordination: Relating pattern (in)stability to neural processes and effector properties. In S. Swinnen, & J. Duysens (Eds.), Neuro-behavioral determinants of interlimb coordination. Amsterdam: Kluwer.
go back to reference Peper, C. E., Nooij, S. A. E., & van Soest, A. J. (2004b). Mass perturbation of a body segment: 2. Effects on interlimb coordination. Journal of Motor Behavior, 36, 425–441.CrossRef Peper, C. E., Nooij, S. A. E., & van Soest, A. J. (2004b). Mass perturbation of a body segment: 2. Effects on interlimb coordination. Journal of Motor Behavior, 36, 425–441.CrossRef
go back to reference Peper, C. E., Ridderikhoff, A., Daffertshofer, A., & Beek, P. J. (2004c). Explanatory limitations of the HKB model: Incentives for a two-tiered model of rhythmic interlimb coordination. Human Movement Science, 23, 673–697.CrossRef Peper, C. E., Ridderikhoff, A., Daffertshofer, A., & Beek, P. J. (2004c). Explanatory limitations of the HKB model: Incentives for a two-tiered model of rhythmic interlimb coordination. Human Movement Science, 23, 673–697.CrossRef
go back to reference Peters, M. (1989). Do feedback processing, output variability, and spatial complexity account for manual asymmetries? Journal of Motor Behavior, 21, 151–155.PubMed Peters, M. (1989). Do feedback processing, output variability, and spatial complexity account for manual asymmetries? Journal of Motor Behavior, 21, 151–155.PubMed
go back to reference Peters, M. (1994). Does handedness play a role in the coordination of bimanual movements? In S. P. Swinnen, J. Massion, H. Heuer & P. Casaer (Eds.), Interlimb coordination: Neural, dynamical and cognitive constraints (pp. 595–615). Orlando: Academic. Peters, M. (1994). Does handedness play a role in the coordination of bimanual movements? In S. P. Swinnen, J. Massion, H. Heuer & P. Casaer (Eds.), Interlimb coordination: Neural, dynamical and cognitive constraints (pp. 595–615). Orlando: Academic.
go back to reference Peters, M., & Schwartz, S. (1989). Coordination of the two hands and effects of attentional manipulation in the production of a bimanual 2:3 polyrhythm. Australian Journal of Psychology, 41, 215–224.CrossRef Peters, M., & Schwartz, S. (1989). Coordination of the two hands and effects of attentional manipulation in the production of a bimanual 2:3 polyrhythm. Australian Journal of Psychology, 41, 215–224.CrossRef
go back to reference Post, A. A., Peper, C. E., & Beek, P. J. (2000a). Relative phase dynamics in perturbed interlimb coordination: The effects of frequency and amplitude. Biological Cybernetics, 83, 529–542.CrossRef Post, A. A., Peper, C. E., & Beek, P. J. (2000a). Relative phase dynamics in perturbed interlimb coordination: The effects of frequency and amplitude. Biological Cybernetics, 83, 529–542.CrossRef
go back to reference Post, A. A., Peper, C. E., Daffertshofer, A., & Beek, P. J. (2000b). Relative phase dynamics in perturbed interlimb coordination: Stability and stochasticity. Biological Cybernetics, 83, 443–459.CrossRef Post, A. A., Peper, C. E., Daffertshofer, A., & Beek, P. J. (2000b). Relative phase dynamics in perturbed interlimb coordination: Stability and stochasticity. Biological Cybernetics, 83, 443–459.CrossRef
go back to reference Riley, M. A., Amazeen, E. L., Amazeen, P. G., Treffner, P. J., & Turvey, M. T. (1997). Effects of temporal scaling and attention on the asymmetrical dynamics of bimanual coordination. Motor Control, 1, 263–283. Riley, M. A., Amazeen, E. L., Amazeen, P. G., Treffner, P. J., & Turvey, M. T. (1997). Effects of temporal scaling and attention on the asymmetrical dynamics of bimanual coordination. Motor Control, 1, 263–283.
go back to reference Rosenbaum, D. A., Slotta, J. D., Vaughan, J., & Plamondon, R. (1991). Optimal movement selection. Psychological Science, 2, 86–91.CrossRef Rosenbaum, D. A., Slotta, J. D., Vaughan, J., & Plamondon, R. (1991). Optimal movement selection. Psychological Science, 2, 86–91.CrossRef
go back to reference Sainburg, R. L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 142, 241–258.CrossRef Sainburg, R. L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 142, 241–258.CrossRef
go back to reference Schmidt, R. C., Shaw, B. K., & Turvey, M. T. (1993). Coupling dynamics in interlimb coordination. Journal of Experimental Psychology: Human Perception and Performance, 19, 397–415.PubMedCrossRef Schmidt, R. C., Shaw, B. K., & Turvey, M. T. (1993). Coupling dynamics in interlimb coordination. Journal of Experimental Psychology: Human Perception and Performance, 19, 397–415.PubMedCrossRef
go back to reference Scholz, J. P., Kelso, J. A. S., & Schöner, G. (1987). Nonequilibrium phase transitions in coordinated biological motion: Critical slowing down and switching time. Physics Letters A, 123, 390–394.CrossRef Scholz, J. P., Kelso, J. A. S., & Schöner, G. (1987). Nonequilibrium phase transitions in coordinated biological motion: Critical slowing down and switching time. Physics Letters A, 123, 390–394.CrossRef
go back to reference Schöner, G., Haken, H., & Kelso, J. A. S. (1986). A stochastic theory of phase-transitions in human hand movement. Biological Cybernetics, 53, 247–257.PubMedCrossRef Schöner, G., Haken, H., & Kelso, J. A. S. (1986). A stochastic theory of phase-transitions in human hand movement. Biological Cybernetics, 53, 247–257.PubMedCrossRef
go back to reference Semjen, A., Summers, J. J., & Cattaert, D. (1995). Hand coordination in bimanual circle drawing. Journal of Experimental Psychology: Human Perception and Performance, 21, 1139–1157.CrossRef Semjen, A., Summers, J. J., & Cattaert, D. (1995). Hand coordination in bimanual circle drawing. Journal of Experimental Psychology: Human Perception and Performance, 21, 1139–1157.CrossRef
go back to reference Serrien, D. J., Ivry, R. B., & Swinnen, S. P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 7, 160–167.PubMedCrossRef Serrien, D. J., Ivry, R. B., & Swinnen, S. P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 7, 160–167.PubMedCrossRef
go back to reference Shen, Y. C., & Franz, E. A. (2005). Hemispheric competition in left-handers on bimanual reaction time tasks. Journal of Motor Behavior, 37, 3–9.PubMedCrossRef Shen, Y. C., & Franz, E. A. (2005). Hemispheric competition in left-handers on bimanual reaction time tasks. Journal of Motor Behavior, 37, 3–9.PubMedCrossRef
go back to reference Sherwood, D. E., & Rios, V. (2001). Divided attention in bimanual aiming movements: Effects on movement accuracy. Research Quarterly for Exercise and Sport, 72, 210–218.PubMed Sherwood, D. E., & Rios, V. (2001). Divided attention in bimanual aiming movements: Effects on movement accuracy. Research Quarterly for Exercise and Sport, 72, 210–218.PubMed
go back to reference Sternad, D., Amazeen, E. L., & Turvey, M. T. (1996). Diffusive, synaptic, and synergetic coupling: An evaluation through in-phase and antiphase rhythmic movements. Journal of Motor Behavior, 28, 255–269.PubMedCrossRef Sternad, D., Amazeen, E. L., & Turvey, M. T. (1996). Diffusive, synaptic, and synergetic coupling: An evaluation through in-phase and antiphase rhythmic movements. Journal of Motor Behavior, 28, 255–269.PubMedCrossRef
go back to reference Stucchi, N., & Viviani, P. (1993). Cerebral dominance and asynchrony between bimanual two-dimensional movements. Journal of Experimental Psychology: Human Perception and Performance, 19, 1200–1220.PubMedCrossRef Stucchi, N., & Viviani, P. (1993). Cerebral dominance and asynchrony between bimanual two-dimensional movements. Journal of Experimental Psychology: Human Perception and Performance, 19, 1200–1220.PubMedCrossRef
go back to reference Summers, J. J., Davis, A. S., & Byblow, W. D. (2002). The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands. Human Movement Science, 21, 699–721.PubMedCrossRef Summers, J. J., Davis, A. S., & Byblow, W. D. (2002). The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands. Human Movement Science, 21, 699–721.PubMedCrossRef
go back to reference Swinnen, S. P., Jardin, K., & Meulenbroek, R. (1996). Between-limb asynchronies during bimanual coordination: Effects of manual dominance and attentional cueing. Neuropsychologia, 34, 1203–1213.PubMedCrossRef Swinnen, S. P., Jardin, K., & Meulenbroek, R. (1996). Between-limb asynchronies during bimanual coordination: Effects of manual dominance and attentional cueing. Neuropsychologia, 34, 1203–1213.PubMedCrossRef
go back to reference Treffner, P. J., & Turvey, M. T. (1995). Handedness and the asymmetric dynamics of bimanual rhythmic coordination. Journal of Experimental Psychology: Human Perception and Performance, 21, 318–333.CrossRef Treffner, P. J., & Turvey, M. T. (1995). Handedness and the asymmetric dynamics of bimanual rhythmic coordination. Journal of Experimental Psychology: Human Perception and Performance, 21, 318–333.CrossRef
go back to reference Treffner, P. J., & Turvey, M. T. (1996). Symmetry, broken symmetry, and handedness in bimanual coordination dynamics. Experimental Brain Research, 107, 463–478.CrossRef Treffner, P. J., & Turvey, M. T. (1996). Symmetry, broken symmetry, and handedness in bimanual coordination dynamics. Experimental Brain Research, 107, 463–478.CrossRef
go back to reference Triggs, W. J., Calvanio, R., & Levine, M. (1997). Transcranial magnetic stimulation reveals a hemispheric asymmetry correlate of intermanual differences in motor performance. Neuropsychologia, 35, 1355–1363.PubMedCrossRef Triggs, W. J., Calvanio, R., & Levine, M. (1997). Transcranial magnetic stimulation reveals a hemispheric asymmetry correlate of intermanual differences in motor performance. Neuropsychologia, 35, 1355–1363.PubMedCrossRef
go back to reference Triggs, W. J., Calvanio, R., Macdonell, R. A. L., Cros, D., & Chiappa, K. H. (1994). Physiological motor asymmetry in human handedness: Evidence from transcranial magnetic stimulation. Brain Research, 636, 270–276.PubMedCrossRef Triggs, W. J., Calvanio, R., Macdonell, R. A. L., Cros, D., & Chiappa, K. H. (1994). Physiological motor asymmetry in human handedness: Evidence from transcranial magnetic stimulation. Brain Research, 636, 270–276.PubMedCrossRef
go back to reference Viviani, P., Perani, D., Grassi, F., Bettinardi, V., & Fazio, F. (1998). Hemispheric asymmetries and bimanual asynchrony in left- and right-handers. Experimental Brain Research, 120, 531–536.CrossRef Viviani, P., Perani, D., Grassi, F., Bettinardi, V., & Fazio, F. (1998). Hemispheric asymmetries and bimanual asynchrony in left- and right-handers. Experimental Brain Research, 120, 531–536.CrossRef
go back to reference Wuyts, I. J., Summers, J. J., Carson, R. G., Byblow, W. D., & Semjen, A. (1996). Attention as a mediating variable in the dynamics of bimanual coordination. Human Movement Science, 15, 877–897.CrossRef Wuyts, I. J., Summers, J. J., Carson, R. G., Byblow, W. D., & Semjen, A. (1996). Attention as a mediating variable in the dynamics of bimanual coordination. Human Movement Science, 15, 877–897.CrossRef
go back to reference Yamanishi, J. I., Kawato, M., & Suzuki, R. (1979). Studies on human finger tapping neural networks by phase-transition curves. Biological Cybernetics, 33, 199–208.PubMedCrossRef Yamanishi, J. I., Kawato, M., & Suzuki, R. (1979). Studies on human finger tapping neural networks by phase-transition curves. Biological Cybernetics, 33, 199–208.PubMedCrossRef
go back to reference Zanone, P. G., & Kelso, J. A. S. (1992). Evolution of behavioral attractors with learning: Nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403–421.PubMedCrossRef Zanone, P. G., & Kelso, J. A. S. (1992). Evolution of behavioral attractors with learning: Nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403–421.PubMedCrossRef
go back to reference Zelaznik, H. N., & Lantero, D. (1996). The role of vision in repetitive circle drawing. Acta Psychologica, 92, 105–118.PubMedCrossRef Zelaznik, H. N., & Lantero, D. (1996). The role of vision in repetitive circle drawing. Acta Psychologica, 92, 105–118.PubMedCrossRef
Metagegevens
Titel
Laterally focused attention modulates asymmetric coupling in rhythmic interlimb coordination
Auteurs
Harjo J. de Poel
C. (Lieke) E. Peper
Peter J. Beek
Publicatiedatum
01-03-2008
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2008
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-006-0096-9

Andere artikelen Uitgave 2/2008

Psychological Research 2/2008 Naar de uitgave