Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2008

01-03-2008 | Original Article

Response times seen as decompression times in Boolean concept use

Auteurs: Joël Bradmetz, Fabien Mathy

Gepubliceerd in: Psychological Research | Uitgave 2/2008

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

This paper reports a study of a multi-agent model of working memory (WM) in the context of Boolean concept learning. The model aims to assess the compressibility of information processed in WM. Concept complexity is described as a function of communication resources (i.e., the number of agents and the structure of communication between agents) required in WM to learn a target concept. This model has been successfully applied in measuring learning times for three-dimensional (3D) concepts (Mathy and Bradmetz in Curr Psychol Cognit 22(1):41–82, 2004). In this previous study, learning time was found to be a function of compression time. To assess the effect of decompression time, this paper presents an extended intra-conceptual study of response times for two- and 3D concepts. Response times are measured in recognition phases. The model explains why the time required to compress a sample of examples into a rule is directly linked to the time to decompress this rule when categorizing examples. Three experiments were conducted with 65, 49, and 84 undergraduate students who were given Boolean concept learning tasks in two and three dimensions (also called rule-based classification tasks). The results corroborate the metric of decompression given by the multi-agent model, especially when the model is parameterized following static serial processing of information. Also, this static serial model better fits the patterns of response times than an exemplar-based model.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
Rule creation is the motor of conceptual progress in many domains. Before Descartes, there was a procedure for each equation, depending on the terms to the right and the left of the equal symbol. Descartes came up with a considerably more economical system of calculations by putting the terms on the left and a zero on the right. This discovery brought him up against the reticence of people to accept that “something” could be equal to “nothing”. Here, we see that all scientific revolutions take time. Similarly, it took a couple of decades for Kepler to admit that planetary orbits were not circular, even though elliptical orbits actually simplified the calculus.
 
2
In artificial intelligence, a theoretical analysis of inductive reasoning has been introduced by Gold (1967). Gold developed the notion of convergence (identification in the limit) by understanding that the most accurate hypotheses are reached faster when beginning to test the smallest ones (see also Osherson, Stob, & Weinstein, 1986, for a development of Gold theories). This principle, which consists of choosing the simplest rules is known as Occam’s razor, which guarantees both fast learning and accurate generalizations (see a study of the simplicity principle in unsupervised categorization in Pothos & Chater, 2002; a study of learning based on the principle of minimum description length (MDL) in Fass & Feldman, 2002; Feldman, 2003b for a short introduction to simplicity principles in concept learning and Feldman, 2004, for a study of the statistical distribution of simplicity). Recently, computational learning theories have achieved success with the probably approximately correct (PAC) learning theory of Valiant (1984) (Anthony & Biggs, 1992; Hanson, Drastal, & Rivest, 1994a, b; Hanson, Petsche, Kearns, & Rivest; Kearns & Vazirani, 1994). This approach is a general framework (e.g., sample complexity, Vapnik–Chernovenkis dimension, etc.) for a lot of inductive learning models like neural networks or inductive logic programming (De Raedt, 1997). A second approach, which we will follow in this paper, aims to develop symbolic learning algorithms based on decision trees, and is very well suited to the non-fuzzy Boolean concepts studied here (Quinlan, 1986; see Mitchell, 1997, for a general presentation or Shavlik & Dietterich, 1990, for readings in machine learning).
 
3
This progressive adaptation recalls “in the spirit” the procedure of identification in the limit (Gold, 1967), the cascade correlation algorithm for neural networks (Fahlman & Lebiere, 1990), the RULEX model that begins with the simplest rules and adds exceptions if necessary (Nosofsky, Palmeri, & McKinley, 1994b), and the SUSTAIN model of category learning in which clusters are recruited progressively (Love, Medin, & Gureckis, 2004b).
 
4
We will not present the method for obtaining communication protocols, as it is already explained in Mathy and Bradmetz (2004). The method is based on computing the information gain for each piece of information given by agents until there is no more uncertainty about the class. The knowledge of an agent is computed by the conditional entropy quantifying the remaining uncertainty about the class once the agent’s knowledge is made public.
 
5
The numbering of stimuli used in Table 2 (ex 1, ex 2, ex 3, and ex 4) is shown in Fig. 3.
 
6
Let us make an analogy: when memorizing before dialing a phone number, it takes less time to dial a number after its entire memorization (let us imagine 6 s to memorize the entire number plus 3 s to dial, for a total of 9 s), than to quickly look up and memorize the numbers and dial them group by group (e.g., four groups, and 3 s per group, for a total of 12 s). Nevertheless, a lot of people choose the second solution because starting to memorize an entire number takes more time (i.e., 6 s in our example) than directly memorizing the first group and then dialing it (i.e., 3 s). Of course, this analogy should be experimentally examined.
 
7
One of the two players chooses a word and the other must guess it after having asked as few yes–no questions as possible.
 
8
There is an analogy with variable typing in computer science. Static-typed variables are defined at compile-time and remain unchanged throughout program execution, whereas dynamic variables are defined at run-time.
 
Literatuur
go back to reference Anthony, M., & Biggs, N. (1992). Computational learning theory. Cambridge, MA: Cambridge University Press. Anthony, M., & Biggs, N. (1992). Computational learning theory. Cambridge, MA: Cambridge University Press.
go back to reference Arnauld, A., & Nicole, P. (1996). Logic or the art of thinking. Cambridge, UK: Cambridge university press (Original work published 1662). Arnauld, A., & Nicole, P. (1996). Logic or the art of thinking. Cambridge, UK: Cambridge university press (Original work published 1662).
go back to reference Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481.PubMedCrossRef Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481.PubMedCrossRef
go back to reference Ashby, F. G., Boyton, G., & Lee, W. W. (1994). Categorization response time with multidimensional stimuli. Perception and Psychophysics, 55, 11–27.PubMed Ashby, F. G., Boyton, G., & Lee, W. W. (1994). Categorization response time with multidimensional stimuli. Perception and Psychophysics, 55, 11–27.PubMed
go back to reference Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton, NJ: Princeton University Press. Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton, NJ: Princeton University Press.
go back to reference Bennett, C. H. (1986). On the nature and origin of complexity in discrete, homogeneous, locally-interacting systems. Foundations of Physics, 16(6), 585–592.CrossRef Bennett, C. H. (1986). On the nature and origin of complexity in discrete, homogeneous, locally-interacting systems. Foundations of Physics, 16(6), 585–592.CrossRef
go back to reference Bourne, L. E. Jr. (1970). Knowing and using concepts. Psychological Review, 77, 546–556.CrossRef Bourne, L. E. Jr. (1970). Knowing and using concepts. Psychological Review, 77, 546–556.CrossRef
go back to reference Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York: Wiley. Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York: Wiley.
go back to reference Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Compilers, 35(8), 677–691.CrossRef Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Compilers, 35(8), 677–691.CrossRef
go back to reference Chaitin, G. J. (1974). Information-theoretic computational complexity. IEEE Transactions on Information Theory, 20(1), 1015.CrossRef Chaitin, G. J. (1974). Information-theoretic computational complexity. IEEE Transactions on Information Theory, 20(1), 1015.CrossRef
go back to reference Chaitin, G. J. (1987). Information, randomness and incompleteness: papers on algorithmic information theory. New York: World Scientific. Chaitin, G. J. (1987). Information, randomness and incompleteness: papers on algorithmic information theory. New York: World Scientific.
go back to reference Chaitin, G. J. (1990). Algorithmic information theory. Cambridge, MA: Cambridge University Press. Chaitin, G. J. (1990). Algorithmic information theory. Cambridge, MA: Cambridge University Press.
go back to reference Chater, N., Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in Cognitive Science, 7(1), 19–22.CrossRef Chater, N., Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in Cognitive Science, 7(1), 19–22.CrossRef
go back to reference Davies, P. C. W. (1989). Why is the physical world so comprehensible? In W. H. Zurek (Ed.), Complexity, entropy, and the physics of information, pp. 61–70. New York: Addison-Wesley. Davies, P. C. W. (1989). Why is the physical world so comprehensible? In W. H. Zurek (Ed.), Complexity, entropy, and the physics of information, pp. 61–70. New York: Addison-Wesley.
go back to reference De Raedt, L. (1997). Logical settings for concept-learning. Artificial Intelligence, 95, 187–201.CrossRef De Raedt, L. (1997). Logical settings for concept-learning. Artificial Intelligence, 95, 187–201.CrossRef
go back to reference Delahaye, J. P. (1993). Complexités. In J. P. Delahaye (Ed.), Logique, informatique et paradoxe. Paris: Pour la science. Delahaye, J. P. (1993). Complexités. In J. P. Delahaye (Ed.), Logique, informatique et paradoxe. Paris: Pour la science.
go back to reference Delahaye, J. P. (1994). Information, complexité et hasard. Paris: Hermès. Delahaye, J. P. (1994). Information, complexité et hasard. Paris: Hermès.
go back to reference Duda, R. O., Hart, E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley. Duda, R. O., Hart, E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley.
go back to reference Estes, W. K. (1994). Classification and cognition. Oxford: Oxford University Press. Estes, W. K. (1994). Classification and cognition. Oxford: Oxford University Press.
go back to reference Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. Technical report. CMU-CS-90–100. Canergy-Mellon University. Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. Technical report. CMU-CS-90–100. Canergy-Mellon University.
go back to reference Fass, D., & Feldman, J. (2002). Categorization under complexity: A unified MDL account of human learning of regular and irregular categories. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems, Proceedings of the 2002 conference (Vol. 15). Cambridge, MA: MIT Press. Fass, D., & Feldman, J. (2002). Categorization under complexity: A unified MDL account of human learning of regular and irregular categories. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems, Proceedings of the 2002 conference (Vol. 15). Cambridge, MA: MIT Press.
go back to reference Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407, 630–633.PubMedCrossRef Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407, 630–633.PubMedCrossRef
go back to reference Feldman, J. (2003a). A catalog of Boolean concepts. Journal of Mathematical Psychology, 47, 75–89.CrossRef Feldman, J. (2003a). A catalog of Boolean concepts. Journal of Mathematical Psychology, 47, 75–89.CrossRef
go back to reference Feldman, J. (2003b). The simplicity principle in human concept learning. Cognition, 93, 199–224.CrossRef Feldman, J. (2003b). The simplicity principle in human concept learning. Cognition, 93, 199–224.CrossRef
go back to reference Feldman, J. (2004). How surprising is a simple pattern? Quantifying “Eureka!”. Current Directions in Psychological Science, 12(6), 227–232.CrossRef Feldman, J. (2004). How surprising is a simple pattern? Quantifying “Eureka!”. Current Directions in Psychological Science, 12(6), 227–232.CrossRef
go back to reference Ferber, J. (1999). Multi-agent systems, an introduction to distributed artificial intelligence. Harlow: Addison-Wesley. Ferber, J. (1999). Multi-agent systems, an introduction to distributed artificial intelligence. Harlow: Addison-Wesley.
go back to reference Gell-Mann, M. (1994). The quark and the jaguar: Adventures in the simple and the complex. New York: Freeman and Company. Gell-Mann, M. (1994). The quark and the jaguar: Adventures in the simple and the complex. New York: Freeman and Company.
go back to reference Gluck, M. A., & Bower, G. H. (1988a). Evaluating an adaptive network model of human learning. Journal of Memory and Language, 27, 166–195.CrossRef Gluck, M. A., & Bower, G. H. (1988a). Evaluating an adaptive network model of human learning. Journal of Memory and Language, 27, 166–195.CrossRef
go back to reference Gluck, M. A., & Bower, G. H. (1988b). From conditioning to category learning: an adaptive network model. Journal of Experimental Psychology: General, 117, 227–247.CrossRef Gluck, M. A., & Bower, G. H. (1988b). From conditioning to category learning: an adaptive network model. Journal of Experimental Psychology: General, 117, 227–247.CrossRef
go back to reference Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.CrossRef Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.CrossRef
go back to reference Gosselin, F., & Schyns, P. G. (2001). Why do we SLIP to the basic level? Computational constraints and their implementation. Psychological Review, 108(4), 735–758.PubMedCrossRef Gosselin, F., & Schyns, P. G. (2001). Why do we SLIP to the basic level? Computational constraints and their implementation. Psychological Review, 108(4), 735–758.PubMedCrossRef
go back to reference Hahn, U., & Chater, N. (1997). Concepts and similarity. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 43–92). Cambridge, MA: MIT Press. Hahn, U., & Chater, N. (1997). Concepts and similarity. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 43–92). Cambridge, MA: MIT Press.
go back to reference Hanson, S. J., Drastal, G. A., & Rivest, R. L. (1994a). Computational learning theory and natural learning systems (Vol. 1). Cambridge, MA: MIT Press. Hanson, S. J., Drastal, G. A., & Rivest, R. L. (1994a). Computational learning theory and natural learning systems (Vol. 1). Cambridge, MA: MIT Press.
go back to reference Hanson, S. J., Petsche, T., Kearns, M., & Rivest, R. L. (1994b). Computational learning theory and natural learning systems (Vol. 2). Cambridge, MA: MIT Press. Hanson, S. J., Petsche, T., Kearns, M., & Rivest, R. L. (1994b). Computational learning theory and natural learning systems (Vol. 2). Cambridge, MA: MIT Press.
go back to reference Hovland, C. L. (1966). A communication analysis of concept learning. Psychological Review, 59, 461–472.CrossRef Hovland, C. L. (1966). A communication analysis of concept learning. Psychological Review, 59, 461–472.CrossRef
go back to reference Hromkovič, J. (1997). Communication complexity and parallel computing. New York: Springer. Hromkovič, J. (1997). Communication complexity and parallel computing. New York: Springer.
go back to reference Huber, L. (2001). Visual categorization in pigeons. In R. G. Cook (Ed.), Avian visual cognition [On-line]. Available: www.pigeon.psy.tufts.edu/avc/huber/. Huber, L. (2001). Visual categorization in pigeons. In R. G. Cook (Ed.), Avian visual cognition [On-line]. Available: www.pigeon.psy.tufts.edu/avc/huber/.
go back to reference Hunt, E. B., Marin, J., & Stone, P. J. (1966). Experiments in induction. New York: Academic. Hunt, E. B., Marin, J., & Stone, P. J. (1966). Experiments in induction. New York: Academic.
go back to reference Huth, M., & Ryan, M. (2000). Logic in computer science: Modeling and reasoning about systems. London: Cambridge University Press. Huth, M., & Ryan, M. (2000). Logic in computer science: Modeling and reasoning about systems. London: Cambridge University Press.
go back to reference Keanrs, M. J., Vazirani, U. V. (1994). An introduction to computational learning theory. Cambridge, MA: MIT Press. Keanrs, M. J., Vazirani, U. V. (1994). An introduction to computational learning theory. Cambridge, MA: MIT Press.
go back to reference Kolmogorov, A. N. (1965). Three approaches for defining the concept of information quantity. Information Transmission, 1, 3–11. Kolmogorov, A. N. (1965). Three approaches for defining the concept of information quantity. Information Transmission, 1, 3–11.
go back to reference Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.PubMedCrossRef Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.PubMedCrossRef
go back to reference Lamberts, K. (1997). Process models of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 43–92). Cambridge, MA: MIT Press. Lamberts, K. (1997). Process models of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 43–92). Cambridge, MA: MIT Press.
go back to reference Lamberts, K. (2000). Information-accumulation theory of speeded categorization. Psychological Review, 107, 227–260.PubMedCrossRef Lamberts, K. (2000). Information-accumulation theory of speeded categorization. Psychological Review, 107, 227–260.PubMedCrossRef
go back to reference Levine, M. (1966). Hypothesis behavior by humans during discrimination learning. Journal of Experimental Psychology, 71, 331–338.PubMedCrossRef Levine, M. (1966). Hypothesis behavior by humans during discrimination learning. Journal of Experimental Psychology, 71, 331–338.PubMedCrossRef
go back to reference Li, M., & Vitányi, P. (1997). An introduction to Kolmogorov complexity and its applications. New York: Springer Verlag. Li, M., & Vitányi, P. (1997). An introduction to Kolmogorov complexity and its applications. New York: Springer Verlag.
go back to reference Lockhead, G., & Pomerantz, J. R. (Eds.). (1991). The perception of structure. Washington: American Psychological Association. Lockhead, G., & Pomerantz, J. R. (Eds.). (1991). The perception of structure. Washington: American Psychological Association.
go back to reference Love, B. C., & Markman, A. B. (2003). The nonindependence of stimulus properties in human concept learning. Memory and Cognition, 31(5), 790–799. Love, B. C., & Markman, A. B. (2003). The nonindependence of stimulus properties in human concept learning. Memory and Cognition, 31(5), 790–799.
go back to reference Love, B. C., Medin, D. L., & Gureckis, T. M. (2004a). SUSTAIN: A network model of category learning. Psychological Review, 111, 309–332.CrossRef Love, B. C., Medin, D. L., & Gureckis, T. M. (2004a). SUSTAIN: A network model of category learning. Psychological Review, 111, 309–332.CrossRef
go back to reference Love, B. C., Medin, D. L., & Gureckis, T. M. (2004b). SUSTAIN: A network model of category learning. Psychological Review, 111(2), 309–332.CrossRef Love, B. C., Medin, D. L., & Gureckis, T. M. (2004b). SUSTAIN: A network model of category learning. Psychological Review, 111(2), 309–332.CrossRef
go back to reference Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. Bush, E. Galanter (Eds.), Handbook of mathematical psychology (pp. 103–189). New York: Wiley. Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. Bush, E. Galanter (Eds.), Handbook of mathematical psychology (pp. 103–189). New York: Wiley.
go back to reference Mathy, F. (2002). L’apprenabilité des concepts évaluée au moyen d’un modèle multi-agent de la complexité des communications en mémoire de travail. Unpublished Doctoral Dissertation. Université de Reims, France. Mathy, F. (2002). L’apprenabilité des concepts évaluée au moyen d’un modèle multi-agent de la complexité des communications en mémoire de travail. Unpublished Doctoral Dissertation. Université de Reims, France.
go back to reference Mathy, F., Bradmetz, J. (1999). Un modèle multi-agent de la complexité conceptuelle. In M. P. Gleizes, P. Marcenac (Eds.), Ingénierie des systèmes multi-agents: acte des 7e Journées Francophones d’Intelligence Artificielle et Systèmes Multi-Agents. Paris: Hermès. (pp. 343–345). Mathy, F., Bradmetz, J. (1999). Un modèle multi-agent de la complexité conceptuelle. In M. P. Gleizes, P. Marcenac (Eds.), Ingénierie des systèmes multi-agents: acte des 7e Journées Francophones d’Intelligence Artificielle et Systèmes Multi-Agents. Paris: Hermès. (pp. 343–345).
go back to reference Mathy, F., & Bradmetz, J. (2004). A theory of the graceful complexification of concepts and their learnability. Current Psychology of Cognition, 22(1), 41–82. Mathy, F., & Bradmetz, J. (2004). A theory of the graceful complexification of concepts and their learnability. Current Psychology of Cognition, 22(1), 41–82.
go back to reference Medin, D. L., & Schaffer, M. M. (1978). A context theory of classification learning, Psychological Review, 85, 207–238.CrossRef Medin, D. L., & Schaffer, M. M. (1978). A context theory of classification learning, Psychological Review, 85, 207–238.CrossRef
go back to reference Minsky, M. L. (1985). The society of mind. New York, NY: Simon and Schuster (French translation: La société de l’esprit. Paris: Inter Editions, 1988). Minsky, M. L. (1985). The society of mind. New York, NY: Simon and Schuster (French translation: La société de l’esprit. Paris: Inter Editions, 1988).
go back to reference Mitchell, T. (1997). Machine learning. New York, NY: McGraw-Hill. Mitchell, T. (1997). Machine learning. New York, NY: McGraw-Hill.
go back to reference Myung, I. J. (1994). Maximum entropy interpretation of decision bound and context models of categorization. Journal of Mathematical Psychology, 38, 335–365.CrossRef Myung, I. J. (1994). Maximum entropy interpretation of decision bound and context models of categorization. Journal of Mathematical Psychology, 38, 335–365.CrossRef
go back to reference Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.CrossRef Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.CrossRef
go back to reference Nosofsky, R. M., & Alfonso-Reese, L. A. (1999). Effects of similarity and practice on speeded classification response times and accuracies: Further tests of an exemplar-retrieval model. Memory and Cognition, 27, 78–93. Nosofsky, R. M., & Alfonso-Reese, L. A. (1999). Effects of similarity and practice on speeded classification response times and accuracies: Further tests of an exemplar-retrieval model. Memory and Cognition, 27, 78–93.
go back to reference Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., & Gauthier, P. (1994a). Comparing models of rules-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961). Memory and Cognition, 22, 352–369. Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., & Gauthier, P. (1994a). Comparing models of rules-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961). Memory and Cognition, 22, 352–369.
go back to reference Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining exemplar-based category representations and connectionist learning rules. Journal of experimental Psychology: Learning, Memory, and Cognition, 18, 211–233.PubMedCrossRef Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining exemplar-based category representations and connectionist learning rules. Journal of experimental Psychology: Learning, Memory, and Cognition, 18, 211–233.PubMedCrossRef
go back to reference Nosofsky, R. M., Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104, 266–300.PubMedCrossRef Nosofsky, R. M., Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104, 266–300.PubMedCrossRef
go back to reference Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994b). Rule-plus-exception model of classification learning. Psychological Review, 101(1), 53–79.CrossRef Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994b). Rule-plus-exception model of classification learning. Psychological Review, 101(1), 53–79.CrossRef
go back to reference Osherson, D. N., & Smith, E. E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition, 9, 35–58.PubMedCrossRef Osherson, D. N., & Smith, E. E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition, 9, 35–58.PubMedCrossRef
go back to reference Osherson, D. Stob, M., & Weistein, S. (1986). Systems that learn: an introduction to learning theory for cognitive and computer scientists. Cambridge, MA: MIT Press. Osherson, D. Stob, M., & Weistein, S. (1986). Systems that learn: an introduction to learning theory for cognitive and computer scientists. Cambridge, MA: MIT Press.
go back to reference Pothos, E. M., & Chater, N. (2002). A simplicity principle in unsupervised human categorization. Cognitive Science, 26, 303–343.CrossRef Pothos, E. M., & Chater, N. (2002). A simplicity principle in unsupervised human categorization. Cognitive Science, 26, 303–343.CrossRef
go back to reference Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
go back to reference Richards, W., & Bobick, A. (1988). Playing twenty questions with nature. In Z. W. Pylyshyn (Ed.), Computational processes in human vision: an interdisciplinary perspective (pp. 3–26). Norwood, NJ: Ablex. Richards, W., & Bobick, A. (1988). Playing twenty questions with nature. In Z. W. Pylyshyn (Ed.), Computational processes in human vision: an interdisciplinary perspective (pp. 3–26). Norwood, NJ: Ablex.
go back to reference Richards, W., McKay, B. D., & Richards, D. (2002). The probability of collective choice with shared knowledge structures. Journal of Mathematical Psychology, 46, 338–351.CrossRef Richards, W., McKay, B. D., & Richards, D. (2002). The probability of collective choice with shared knowledge structures. Journal of Mathematical Psychology, 46, 338–351.CrossRef
go back to reference Rips, L. J., Shoben, E. J., Smith, E. E. (1973). Semantic distance and the verification of semantic relations. Journal of Verbal Learning and Verbal Behavior, 12, 1–20.CrossRef Rips, L. J., Shoben, E. J., Smith, E. E. (1973). Semantic distance and the verification of semantic relations. Journal of Verbal Learning and Verbal Behavior, 12, 1–20.CrossRef
go back to reference Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367.PubMedCrossRef Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367.PubMedCrossRef
go back to reference Rosch, E., & Mervis, C. B. (1975). Family resemblances: studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.CrossRef Rosch, E., & Mervis, C. B. (1975). Family resemblances: studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.CrossRef
go back to reference Selfridge, O. (1959). Pandemonium: a paradigm for learning. In D. V. Blake, A. M. Uttley (Eds.), Proceedings of the symposium on mechanisation of thought processes (pp 511–529). London: H. M. Stationary Office. Selfridge, O. (1959). Pandemonium: a paradigm for learning. In D. V. Blake, A. M. Uttley (Eds.), Proceedings of the symposium on mechanisation of thought processes (pp 511–529). London: H. M. Stationary Office.
go back to reference Shavlik, J. W., & Dietterich, T. G. (Eds.). (1990). Readings in machine learning. San Mateo, CA: Morgan Kaufmann. Shavlik, J. W., & Dietterich, T. G. (Eds.). (1990). Readings in machine learning. San Mateo, CA: Morgan Kaufmann.
go back to reference Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317–1323.PubMedCrossRef Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317–1323.PubMedCrossRef
go back to reference Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological Monographs, 75 (13, whole No. 517). Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological Monographs, 75 (13, whole No. 517).
go back to reference Shin, H. J., & Nosofsky, R. M. (1992). Similarity-scaling studies of dot-pattern classification and recognition. Journal of Experimental Psychology: General, 121, 278–304.CrossRef Shin, H. J., & Nosofsky, R. M. (1992). Similarity-scaling studies of dot-pattern classification and recognition. Journal of Experimental Psychology: General, 121, 278–304.CrossRef
go back to reference Siegler, R. S. (1977). The twenty questions game as a form of problem solving. Child Development, 48 (2), 395–403.CrossRef Siegler, R. S. (1977). The twenty questions game as a form of problem solving. Child Development, 48 (2), 395–403.CrossRef
go back to reference Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press. Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.
go back to reference Townsend, J. T., & Wenger, M. J. (2004). The serial-parallel dilemma: A case study in a linkage of theory and method. Psychonomic Bulletin & Review, 11, 391–418. Townsend, J. T., & Wenger, M. J. (2004). The serial-parallel dilemma: A case study in a linkage of theory and method. Psychonomic Bulletin & Review, 11, 391–418.
go back to reference Valiant, L. G. (1984). A theory of the learnable. Communication of the Association for Computing Machinery, 27, 1134–1142. Valiant, L. G. (1984). A theory of the learnable. Communication of the Association for Computing Machinery, 27, 1134–1142.
go back to reference Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media. Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.
go back to reference Yamauchi, T., Love, B. C., & Markman, A. B. (2002). Learning nonlinearly separable categories by inference and classification. Journal of Experimental Psychology: Learning, Memory and Cognition, 28, 585–593.CrossRef Yamauchi, T., Love, B. C., & Markman, A. B. (2002). Learning nonlinearly separable categories by inference and classification. Journal of Experimental Psychology: Learning, Memory and Cognition, 28, 585–593.CrossRef
go back to reference Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44, 41–61.PubMedCrossRef Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44, 41–61.PubMedCrossRef
Metagegevens
Titel
Response times seen as decompression times in Boolean concept use
Auteurs
Joël Bradmetz
Fabien Mathy
Publicatiedatum
01-03-2008
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2008
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-006-0098-7

Andere artikelen Uitgave 2/2008

Psychological Research 2/2008 Naar de uitgave