Skip to main content
Top

2020 | OriginalPaper | Hoofdstuk

11. Immunotherapie van kanker

Auteurs : Prof. dr. W. R. Gerritsen, Drs. H. Westdorp, Prof. dr. J. B. A. G. Haanen

Gepubliceerd in: Leerboek oncologie

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Immunotherapie in de vorm van immuun checkpoint inhibitoren is de grote doorbraak binnen de behandeling van kanker. Behandeling met immuun checkpoint inhibitoren zorgt ervoor dat immunosuppressieve receptoren op T-cellen of kankercellen worden geblokkeerd. Hierdoor ontstaat een toename van geactiveerde T-cellen of een betere herkenning en ‘killing’ van kankercellen door T-cellen. Door gebruik te maken van combinatietherapie van verschillende immuun checkpoint inhibitoren, kan dit effect worden versterkt en vindt er een nog grotere antitumor-immuunrespons plaats. Bij verschillende solide tumoren en hematologische maligniteiten heeft behandeling van patiënten met immuun checkpoint inhibitoren inmiddels geleid tot een overleving van meerdere jaren. Helaas kan met name de combinatietherapie ook gepaard gaan met serieuze morbiditeit en zelfs mortaliteit ten gevolge van immuungerelateerde bijwerkingen. Deze ontstaan door een ‘overactief’ immuunsysteem, waarbij T-cellen auto-immuniteit kunnen veroorzaken in vrijwel elk orgaansysteem. Dit maakt het soms noodzakelijk het overactieve immuunsysteem weer te dempen met immunosuppressiva, zoals hogedosis corticosteroïden.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Bindea G, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95.CrossRef Bindea G, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95.CrossRef
go back to reference Blank CU, et al. Cancer immunology. The ‘cancer immunogram’. Science. 2016;352(6286):658–60. Blank CU, et al. Cancer immunology. The ‘cancer immunogram’. Science. 2016;352(6286):658–60.
go back to reference Champiat S, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27(4):559–74.CrossRef Champiat S, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27(4):559–74.CrossRef
go back to reference Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.CrossRef Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.CrossRef
go back to reference Cristescu R, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411). eaar3593. Cristescu R, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411). eaar3593.
go back to reference Dotti G, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107–26.CrossRef Dotti G, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107–26.CrossRef
go back to reference Eschhar Z, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4.CrossRef Eschhar Z, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4.CrossRef
go back to reference Fridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298–306.CrossRef Fridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298–306.CrossRef
go back to reference Galon J, et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014;232:199–209.CrossRef Galon J, et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014;232:199–209.CrossRef
go back to reference Haanen JBAG, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv264–6. Haanen JBAG, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv264–6.
go back to reference Hodge JW, et al. A triad of costimulatory molecules synergize to amplifyT-cell activation. Cancer Res. 1999;59(22):5800–7. Hodge JW, et al. A triad of costimulatory molecules synergize to amplifyT-cell activation. Cancer Res. 1999;59(22):5800–7.
go back to reference Kantoff PW, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105.CrossRef Kantoff PW, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105.CrossRef
go back to reference Kenter GG, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361(19):1838–47.CrossRef Kenter GG, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361(19):1838–47.CrossRef
go back to reference Kruit WH, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European organisation for research and treatment of cancer melanoma group in metastatic melanoma. J Clin Oncol. 2013;31(19):2413–20.CrossRef Kruit WH, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European organisation for research and treatment of cancer melanoma group in metastatic melanoma. J Clin Oncol. 2013;31(19):2413–20.CrossRef
go back to reference Leach DR, et al. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.CrossRef Leach DR, et al. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.CrossRef
go back to reference Ledford H, et al. Cancer Immunologists scoop medicine Nobel prize. Nature. 2018;562(7725):20–1.CrossRef Ledford H, et al. Cancer Immunologists scoop medicine Nobel prize. Nature. 2018;562(7725):20–1.CrossRef
go back to reference Motz GT, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15.CrossRef Motz GT, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15.CrossRef
go back to reference Schreibelt G, et al. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin Cancer Res. 2016;22(9):2155–66.CrossRef Schreibelt G, et al. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin Cancer Res. 2016;22(9):2155–66.CrossRef
go back to reference Schumacher TN, et al. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.CrossRef Schumacher TN, et al. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.CrossRef
go back to reference Tel J, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73(3):1063–75.CrossRef Tel J, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73(3):1063–75.CrossRef
go back to reference Van Poelgeest MI, et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med. 2013;11:88.CrossRef Van Poelgeest MI, et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med. 2013;11:88.CrossRef
go back to reference Vansteenkiste J, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol. 2013;31(19):2396–403.CrossRef Vansteenkiste J, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol. 2013;31(19):2396–403.CrossRef
go back to reference Vigneron N, et al. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15. Vigneron N, et al. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15.
go back to reference Westdorp H, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019;7(1):302.CrossRef Westdorp H, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019;7(1):302.CrossRef
go back to reference Zeestraten EC, et al. Addition of interferon-α to the p53-SLP® vaccine results in increased production of interferon-γ in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int J Cancer. 2013;132(7):1581–91.CrossRef Zeestraten EC, et al. Addition of interferon-α to the p53-SLP® vaccine results in increased production of interferon-γ in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int J Cancer. 2013;132(7):1581–91.CrossRef
go back to reference Haanen JBAG, et al. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2017;28(Suppl 4):iv119–42. Haanen JBAG, et al. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2017;28(Suppl 4):iv119–42.
Metagegevens
Titel
Immunotherapie van kanker
Auteurs
Prof. dr. W. R. Gerritsen
Drs. H. Westdorp
Prof. dr. J. B. A. G. Haanen
Copyright
2020
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2449-1_11