Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2013

01-01-2013 | Original Article

How affordances associated with a distractor object affect compatibility effects: A study with the computational model TRoPICALS

Auteurs: Daniele Caligiore, Anna M. Borghi, Domenico Parisi, Rob Ellis, Angelo Cangelosi, Gianluca Baldassarre

Gepubliceerd in: Psychological Research | Uitgave 1/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Seeing an object activates both visual and action codes in the brain. Crucial evidence supporting this view is the observation of object to response compatibility effects: perception of an object can facilitate or interfere with the execution of an action (e.g., grasping) even when the viewer has no intention of interacting with the object. TRoPICALS is a computational model that proposes some general principles about the brain mechanisms underlying compatibility effects, in particular the idea that top-down bias from prefrontal cortex, and whether it conflicts or not with the actions afforded by an object, plays a key role in such phenomena. Experiments on compatibility effects using a target and a distractor object show the usual positive compatibility effect of the target, but also an interesting negative compatibility effect of the distractor: responding with a grip compatible with the distractor size produces slower reaction times than the incompatible case. Here, we present an enhanced version of TRoPICALS that reproduces and explains these new results. This explanation is based on the idea that the prefrontal cortex plays a double role in its top-down guidance of action selection producing: (a) a positive bias in favour of the action requested by the experimental task; (b) a negative bias directed to inhibiting the action evoked by the distractor. The model also provides testable predictions on the possible consequences of damage to volitional circuits such as in Parkinsonian patients.
Literatuur
go back to reference Arbib, M. A. (1997). From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation. Philosophical Transactions of The Royal Society B Biological Sciences, 352, 1429–1436.CrossRef Arbib, M. A. (1997). From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation. Philosophical Transactions of The Royal Society B Biological Sciences, 352, 1429–1436.CrossRef
go back to reference Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current Opinion in Neurobiology, 14, 212–217.PubMedCrossRef Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current Opinion in Neurobiology, 14, 212–217.PubMedCrossRef
go back to reference Berthier, N. E., Rosenstein, M. T., & Barto, A. G. (2005). Approximate optimal control as a model for motor learning. Psychological Review, 112, 329–346.PubMedCrossRef Berthier, N. E., Rosenstein, M. T., & Barto, A. G. (2005). Approximate optimal control as a model for motor learning. Psychological Review, 112, 329–346.PubMedCrossRef
go back to reference Borghi, A. M., Di Ferdinando, A., & Parisi, D. (2011). Objects, spatial compatibility, and affordances: A connectionist study. Cognitive Systems Research, 12, 33–44.CrossRef Borghi, A. M., Di Ferdinando, A., & Parisi, D. (2011). Objects, spatial compatibility, and affordances: A connectionist study. Cognitive Systems Research, 12, 33–44.CrossRef
go back to reference Caligiore, D., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010a). TRoPICALS: A computational embodied neuroscience model of compatibility effects. Psychological Review, 117, 1188–1228.PubMedCrossRef Caligiore, D., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010a). TRoPICALS: A computational embodied neuroscience model of compatibility effects. Psychological Review, 117, 1188–1228.PubMedCrossRef
go back to reference Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M., & Baldassare, G. (2008). Using motor babbling and Hebb rules for modeling the development of reaching with obstacles and grasping. In R. Dillmann, C. Maloney, G. Sandini, T. Asfour, G. Cheng, G. Metta, & A. Ude (Eds.), International Conference on Cognitive Systems (pp. E1–E8). Karlsruhe: University of Karlsruhe. Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M., & Baldassare, G. (2008). Using motor babbling and Hebb rules for modeling the development of reaching with obstacles and grasping. In R. Dillmann, C. Maloney, G. Sandini, T. Asfour, G. Cheng, G. Metta, & A. Ude (Eds.), International Conference on Cognitive Systems (pp. E1–E8). Karlsruhe: University of Karlsruhe.
go back to reference Caligiore, D., Guglielmelli, E., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010b). A Reinforcement Learning Model of Reaching Integrating Kinematic and Dynamic Control in a Simulated Arm Robot. In: IEEE International Conference on Development and Learning (ICDL2010), IEEE, Piscataway, NJ, pp 211–218. Caligiore, D., Guglielmelli, E., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010b). A Reinforcement Learning Model of Reaching Integrating Kinematic and Dynamic Control in a Simulated Arm Robot. In: IEEE International Conference on Development and Learning (ICDL2010), IEEE, Piscataway, NJ, pp 211–218.
go back to reference Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of The Royal Society B-Biological Sciences, 362, 1585–1599.CrossRef Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of The Royal Society B-Biological Sciences, 362, 1585–1599.CrossRef
go back to reference Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45, 801–814.PubMedCrossRef Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45, 801–814.PubMedCrossRef
go back to reference Clark, A. (1996). Being there–Putting brain, body and world together again. Cambridge: MIT Press. Clark, A. (1996). Being there–Putting brain, body and world together again. Cambridge: MIT Press.
go back to reference Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11, 157–163.PubMedCrossRef Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11, 157–163.PubMedCrossRef
go back to reference Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press.
go back to reference Deco, G., & Rolls, E. T. (2003). Attention and working memory: A dynamical model of neuronal activity in the prefrontal cortex. European Journal of Neuroscience, 18, 2374–2390.PubMedCrossRef Deco, G., & Rolls, E. T. (2003). Attention and working memory: A dynamical model of neuronal activity in the prefrontal cortex. European Journal of Neuroscience, 18, 2374–2390.PubMedCrossRef
go back to reference Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision–versus power-grip tasks: An fMRI study. Journal of Neurophysiology, 83, 528–536.PubMed Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision–versus power-grip tasks: An fMRI study. Journal of Neurophysiology, 83, 528–536.PubMed
go back to reference Ellis, R., Tucker, M., Symes, E., & Vainio, L. (2007). Does selecting one visual object from several require inhibition of the actions associated with non selected objects? Journal of Experimental Psychology: Human Perception and Performance, 33, 670–691.PubMedCrossRef Ellis, R., Tucker, M., Symes, E., & Vainio, L. (2007). Does selecting one visual object from several require inhibition of the actions associated with non selected objects? Journal of Experimental Psychology: Human Perception and Performance, 33, 670–691.PubMedCrossRef
go back to reference Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Review, 109, 545–572.PubMedCrossRef Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Review, 109, 545–572.PubMedCrossRef
go back to reference Fagg, A. H., & Arbib, M. A. (1998). Modeling parietal-premotor interaction in primate control of grasping. Neural Networks, 11, 1277–1303.PubMedCrossRef Fagg, A. H., & Arbib, M. A. (1998). Modeling parietal-premotor interaction in primate control of grasping. Neural Networks, 11, 1277–1303.PubMedCrossRef
go back to reference Feldman, A. G. (1986). Once more on the equilibrium-point hypothesis (lambda model) for motor control. Journal of Motor Behavior, 18, 17–54.PubMed Feldman, A. G. (1986). Once more on the equilibrium-point hypothesis (lambda model) for motor control. Journal of Motor Behavior, 18, 17–54.PubMed
go back to reference Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven. Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven.
go back to reference Fuster, J. M. (2001). The prefrontal cortex–an update: Time is of the essence. Neuron, 30, 319–333.PubMedCrossRef Fuster, J. M. (2001). The prefrontal cortex–an update: Time is of the essence. Neuron, 30, 319–333.PubMedCrossRef
go back to reference Galpin, A., Tipper, S. P., Dick, J. P., & Poliakoff, E. (2010). Object affordance and spatial-compatibility effects in Parkinson’s disease. Cortex, 47, 332–341. Galpin, A., Tipper, S. P., Dick, J. P., & Poliakoff, E. (2010). Object affordance and spatial-compatibility effects in Parkinson’s disease. Cortex, 47, 332–341.
go back to reference Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
go back to reference Grèzes, J., Tucker, M., Armony, J., Ellis, R., & Passingham, R. E. (2003). Objects automatically potentiate action: An fMRI study of implicit processing. European Journal of Neuroscience, 17, 2735–2740.PubMedCrossRef Grèzes, J., Tucker, M., Armony, J., Ellis, R., & Passingham, R. E. (2003). Objects automatically potentiate action: An fMRI study of implicit processing. European Journal of Neuroscience, 17, 2735–2740.PubMedCrossRef
go back to reference Grill-Spector, K. (2008). Object perception: Physiology. In B. Goldstein (Ed.), Encyclopedia of perception (pp. 648–653). Sage Publications. Grill-Spector, K. (2008). Object perception: Physiology. In B. Goldstein (Ed.), Encyclopedia of perception (pp. 648–653). Sage Publications.
go back to reference Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677.PubMedCrossRef Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677.PubMedCrossRef
go back to reference Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Reviews Neuroscience, 9, 934–946.PubMedCrossRef Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Reviews Neuroscience, 9, 934–946.PubMedCrossRef
go back to reference Hubel, D. H. (1988). Eye, brain and vision. Scientific American Books: New York. Hubel, D. H. (1988). Eye, brain and vision. Scientific American Books: New York.
go back to reference Iberall, T., & Arbib, M. A. (1990). Schemas for the control of hand movements: An essay on cortical localization. In M. A. Goodale (Ed.), Vision and action: The control of grasping (pp. 163–180). Norwood: Ablex Publishing. Iberall, T., & Arbib, M. A. (1990). Schemas for the control of hand movements: An essay on cortical localization. In M. A. Goodale (Ed.), Vision and action: The control of grasping (pp. 163–180). Norwood: Ablex Publishing.
go back to reference Jahanshahi, M., Jenkins, H., Brown, R. G., Marsden, C. D., Passingham, R. E., & Brooks, D. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with pet and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.PubMedCrossRef Jahanshahi, M., Jenkins, H., Brown, R. G., Marsden, C. D., Passingham, R. E., & Brooks, D. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with pet and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.PubMedCrossRef
go back to reference Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187–246.CrossRef Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187–246.CrossRef
go back to reference Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (2000). Principles of Neural Science. New York: McGraw-Hill. Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (2000). Principles of Neural Science. New York: McGraw-Hill.
go back to reference Knight, R. T., Staines, W. R., Swickc, D., & Chaoc, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychologica, 101, 159–178.PubMedCrossRef Knight, R. T., Staines, W. R., Swickc, D., & Chaoc, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychologica, 101, 159–178.PubMedCrossRef
go back to reference Kohonen, T. (1997). Self-Organizing Maps (Second Edition ed.). Berlin: Springer-Verlag.CrossRef Kohonen, T. (1997). Self-Organizing Maps (Second Edition ed.). Berlin: Springer-Verlag.CrossRef
go back to reference Lang, A., & Lozano, A. (1998). Parkinson’s disease. New England Journal of Medicine, 339, 1044–1053.PubMedCrossRef Lang, A., & Lozano, A. (1998). Parkinson’s disease. New England Journal of Medicine, 339, 1044–1053.PubMedCrossRef
go back to reference Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9574–9578.PubMedCrossRef Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9574–9578.PubMedCrossRef
go back to reference Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Current Biology, 5, 552–563.PubMedCrossRef Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Current Biology, 5, 552–563.PubMedCrossRef
go back to reference Miller, E. K., & Cohen, J. D. (2001). An integrative theory of premotor cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRef Miller, E. K., & Cohen, J. D. (2001). An integrative theory of premotor cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRef
go back to reference Milner, D. A., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press. Milner, D. A., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.
go back to reference Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology, 83, 2580–2601.PubMed Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology, 83, 2580–2601.PubMed
go back to reference Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856–869.PubMedCrossRef Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856–869.PubMedCrossRef
go back to reference Noë, A. (2004). Action in perception. In H. Putnam & N. Block (Eds.), Perception (Vol. 37). MIT Press. Noë, A. (2004). Action in perception. In H. Putnam & N. Block (Eds.), Perception (Vol. 37). MIT Press.
go back to reference Nolfi, S. (2009). Behavior and cognition as a complex adaptive system: Insights from robotic experiments. In C. Hooker (Ed.), Handbook of the Philosophy of Science. Volume 10: Philosophy of Complex Systems. General editors: Dov M. Gabbay, Paul Thagard and John Woods. Elsevier. Nolfi, S. (2009). Behavior and cognition as a complex adaptive system: Insights from robotic experiments. In C. Hooker (Ed.), Handbook of the Philosophy of Science. Volume 10: Philosophy of Complex Systems. General editors: Dov M. Gabbay, Paul Thagard and John Woods. Elsevier.
go back to reference Oguro, H., Ward, R., Bracewel, M., Hindle, J., & Rafal, R. (2009). Automatic activation of motor programs by object affordances in patients with Parkinson’s disease. Neuroscience Letters, 9, 856–869. Oguro, H., Ward, R., Bracewel, M., Hindle, J., & Rafal, R. (2009). Automatic activation of motor programs by object affordances in patients with Parkinson’s disease. Neuroscience Letters, 9, 856–869.
go back to reference Oztop, E., Bradley, N. S., & Arbib, M. A. (2004). Infant grasp learning: A computational model. Experimental Brain Research, 158, 480–503.CrossRef Oztop, E., Bradley, N. S., & Arbib, M. A. (2004). Infant grasp learning: A computational model. Experimental Brain Research, 158, 480–503.CrossRef
go back to reference Parisi, D., Ceccon, F., & Nolfi, S. (1990). Econets: Neural networks that learn in an environment. Network, 1, 149–168.CrossRef Parisi, D., Ceccon, F., & Nolfi, S. (1990). Econets: Neural networks that learn in an environment. Network, 1, 149–168.CrossRef
go back to reference Plunkett, K., & Elman, J. L. (1997). Exercises in rethinking innateness: A handbook for connectionist simulations. Cambridge: The MIT Press. Plunkett, K., & Elman, J. L. (1997). Exercises in rethinking innateness: A handbook for connectionist simulations. Cambridge: The MIT Press.
go back to reference Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing and population codes. Nature Reviews Neuroscience, 1, 125–132.PubMedCrossRef Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing and population codes. Nature Reviews Neuroscience, 1, 125–132.PubMedCrossRef
go back to reference Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.PubMedCrossRef Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.PubMedCrossRef
go back to reference Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy, S., Bergman, H., et al. (2010). Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nature Reviews Neuroscience, 11, 760–772.PubMedCrossRef Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy, S., Bergman, H., et al. (2010). Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nature Reviews Neuroscience, 11, 760–772.PubMedCrossRef
go back to reference Rizzolatti, G., & Craighero, L. (2004). The mirror neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRef Rizzolatti, G., & Craighero, L. (2004). The mirror neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRef
go back to reference Rizzolatti, G., Fogassi, L., & Gallese, V. (1997). Parietal cortex: From sight to action. Current Opinion in Neurobiology, 7, 562–567.PubMedCrossRef Rizzolatti, G., Fogassi, L., & Gallese, V. (1997). Parietal cortex: From sight to action. Current Opinion in Neurobiology, 7, 562–567.PubMedCrossRef
go back to reference Rizzolatti, G., Luppino, G., & Matelli, M. (1998). The organization of the cortical motor system: New concepts. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 106, 283–296. Rizzolatti, G., Luppino, G., & Matelli, M. (1998). The organization of the cortical motor system: New concepts. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 106, 283–296.
go back to reference Simon, O., Mangin, J. F., Cohen, L., Bihan, D. L., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487.PubMedCrossRef Simon, O., Mangin, J. F., Cohen, L., Bihan, D. L., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487.PubMedCrossRef
go back to reference Sobel, I., & Feldman, G. (1968). A 3x3 isotropic gradient operator for image processing, Presentation for Stanford Artificial Project. Sobel, I., & Feldman, G. (1968). A 3x3 isotropic gradient operator for image processing, Presentation for Stanford Artificial Project.
go back to reference Sternberg, S. (1969). The discovery of processing stages: Extensions of Doder’s method. In W. G. Koster (Ed.), Attention and Performance II. Amsterdam: North-Holland Publishing Company. Sternberg, S. (1969). The discovery of processing stages: Extensions of Doder’s method. In W. G. Koster (Ed.), Attention and Performance II. Amsterdam: North-Holland Publishing Company.
go back to reference Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Visual Cognition, 8, 769–800.CrossRef Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Visual Cognition, 8, 769–800.CrossRef
go back to reference Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116, 185–203.PubMedCrossRef Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116, 185–203.PubMedCrossRef
go back to reference Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge: MIT Press. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge: MIT Press.
go back to reference Van Essen, D. C., Lewis, J. W., Drury, H. A., Hadjikhani, N., Tootell, R. B., Bakircioglu, M., et al. (2001). Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research, 41, 1359–1378.PubMedCrossRef Van Essen, D. C., Lewis, J. W., Drury, H. A., Hadjikhani, N., Tootell, R. B., Bakircioglu, M., et al. (2001). Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research, 41, 1359–1378.PubMedCrossRef
go back to reference Vinberg, J., & Grill-Spector, K. (2008). Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. Journal of Neurophysiology, 99, 1380–1393.PubMedCrossRef Vinberg, J., & Grill-Spector, K. (2008). Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. Journal of Neurophysiology, 99, 1380–1393.PubMedCrossRef
go back to reference Weiner, K. S., Grill-Spector (2012) Neural representations of faces and limbs neighbor in human high-level visual cortex: Evidence for a new organization principle (accepted to this special issue). Weiner, K. S., Grill-Spector (2012) Neural representations of faces and limbs neighbor in human high-level visual cortex: Evidence for a new organization principle (accepted to this special issue).
Metagegevens
Titel
How affordances associated with a distractor object affect compatibility effects: A study with the computational model TRoPICALS
Auteurs
Daniele Caligiore
Anna M. Borghi
Domenico Parisi
Rob Ellis
Angelo Cangelosi
Gianluca Baldassarre
Publicatiedatum
01-01-2013
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 1/2013
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-012-0424-1

Andere artikelen Uitgave 1/2013

Psychological Research 1/2013 Naar de uitgave