Skip to main content
Top
Gepubliceerd in: Neuropraxis 6/2010

01-12-2010

Het enigma van de nucleus subthalamicus: implicaties voor neurologische en psychiatrische ziektebeelden

Auteurs: Prof. dr. Henk Groenewegen, prof. dr. Harry Uylings

Gepubliceerd in: Neuropraxis | Uitgave 6/2010

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

De nucleus subthalamicus is onderdeel van het complex van kerngebieden dat in de voorhersenen de basale ganglia vormt. De basale ganglia hebben uitgebreide verbindingen met de schors van de grote hersenen en de thalamus in de vorm van parallelle, functioneel gescheiden basale ganglia-thalamocorticale circuits. De functies van deze circuits bestrijken het volledige scala van motorische, cognitieve, motivationele en emotionele aspecten van het gedrag. De relatief kleine subthalamische kern maakt deel uit van vrijwel al deze functioneel verschillende circuits. Functioneel speelt de nucleus subthalamicus een uitermate belangrijke rol bij de selectie door de basale ganglia van de juiste motorische of cognitieve output en de suppressie van competerende output patronen.
Literatuur
go back to reference Albin. R.L., Young. A.B. & Penney, J.B. (1995). The functional anatomy of disorders of the basal ganglia. Trends in Neurosciences, 18, 63–64.PubMedCrossRef Albin. R.L., Young. A.B. & Penney, J.B. (1995). The functional anatomy of disorders of the basal ganglia. Trends in Neurosciences, 18, 63–64.PubMedCrossRef
go back to reference Alexander. G.E., DeLong. M.R. & Strick. P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRef Alexander. G.E., DeLong. M.R. & Strick. P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRef
go back to reference Bejjani, B.P., Damier, P., Arnulf, I., Thivard, L., Bonnet, A.M., Dormont, D., Cornu, P., Pidoux, B., Samson, Y. & Agid Y. (1999). Transient acute depression induced by high-frequency deep-brain stimulation. New England Journal of Medicine, 340, 1476–1480.PubMedCrossRef Bejjani, B.P., Damier, P., Arnulf, I., Thivard, L., Bonnet, A.M., Dormont, D., Cornu, P., Pidoux, B., Samson, Y. & Agid Y. (1999). Transient acute depression induced by high-frequency deep-brain stimulation. New England Journal of Medicine, 340, 1476–1480.PubMedCrossRef
go back to reference Belin D. & Everitt B.J. (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron, 57, 432–441.PubMedCrossRef Belin D. & Everitt B.J. (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron, 57, 432–441.PubMedCrossRef
go back to reference Bergman H., Wichmann T. & DeLong M.R. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436–1438.PubMedCrossRef Bergman H., Wichmann T. & DeLong M.R. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436–1438.PubMedCrossRef
go back to reference Bolam J.P., Hanley J.J., Booth P.A.C. & Bevan M.D. (2000) Synaptic organisation of the basal ganglia. Journal of Anatomy, 196, 527–542.PubMedCrossRef Bolam J.P., Hanley J.J., Booth P.A.C. & Bevan M.D. (2000) Synaptic organisation of the basal ganglia. Journal of Anatomy, 196, 527–542.PubMedCrossRef
go back to reference DeLong M.R. (1990) Primate models of movement disorders of basal ganglia origin. Trends in Neuroscience, 13, 281–285.CrossRef DeLong M.R. (1990) Primate models of movement disorders of basal ganglia origin. Trends in Neuroscience, 13, 281–285.CrossRef
go back to reference Eagle D.M. & Baunez C. (2020) Is there an inhibitory-response-control system in the rat ? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neuroscience and Biobehavioral Reviews, 34, 50–72.CrossRef Eagle D.M. & Baunez C. (2020) Is there an inhibitory-response-control system in the rat ? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neuroscience and Biobehavioral Reviews, 34, 50–72.CrossRef
go back to reference Gerfen C.R. & Bolam J.P. (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H. & Tseng K.Y. (Eds), Handbook of Basal Ganglia Structure and Function. London: Elsevier, 3–28.CrossRef Gerfen C.R. & Bolam J.P. (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H. & Tseng K.Y. (Eds), Handbook of Basal Ganglia Structure and Function. London: Elsevier, 3–28.CrossRef
go back to reference Groenewegen H.J. & Berendse H.W. (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. Journal of Comparative Neurology 294, 607–622.PubMedCrossRef Groenewegen H.J. & Berendse H.W. (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. Journal of Comparative Neurology 294, 607–622.PubMedCrossRef
go back to reference Groenewegen, H.J. & Dongen, Y.C. van (2007). Role of the basal ganglia. In: Wolters, E.C.,Laar, T. van & Berendse, H.W. (Eds), Parkinsonism and Related Disorders. Amsterdam: VU University press, 21–54. Groenewegen, H.J. & Dongen, Y.C. van (2007). Role of the basal ganglia. In: Wolters, E.C.,Laar, T. van & Berendse, H.W. (Eds), Parkinsonism and Related Disorders. Amsterdam: VU University press, 21–54.
go back to reference Groenewegen, H.J. & Uylings H.B.M. (2010). Organization of prefrontal-striatal connections. In: Steiner, H. and Tseng K.Y. (Eds), Handbook of Basal Ganglia Structure and Function. Londen: Elsevier, 353–365.CrossRef Groenewegen, H.J. & Uylings H.B.M. (2010). Organization of prefrontal-striatal connections. In: Steiner, H. and Tseng K.Y. (Eds), Handbook of Basal Ganglia Structure and Function. Londen: Elsevier, 353–365.CrossRef
go back to reference Haber, S.N., Fudge, J.L. & McFarland, N.R. (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience, 20, 2369–2382.PubMed Haber, S.N., Fudge, J.L. & McFarland, N.R. (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience, 20, 2369–2382.PubMed
go back to reference Haber, S.N. (2003) The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317–330.PubMedCrossRef Haber, S.N. (2003) The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317–330.PubMedCrossRef
go back to reference Heida, T., Marani, E. & Usunoff, K.G. (2008). The subthalamic nucleus. Part II: Modelling and simulation of activity. Advances in Anatomy, Embryology and Cell Biology, 199, 1–88.CrossRef Heida, T., Marani, E. & Usunoff, K.G. (2008). The subthalamic nucleus. Part II: Modelling and simulation of activity. Advances in Anatomy, Embryology and Cell Biology, 199, 1–88.CrossRef
go back to reference Hikosaka, O. & Isoda, M. (2010). Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends in Cognitive Sciences, 14, 154–161.PubMedCrossRef Hikosaka, O. & Isoda, M. (2010). Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends in Cognitive Sciences, 14, 154–161.PubMedCrossRef
go back to reference Joel, D. & Weiner, I. (1994) The organization of the basal gangliathalamocortical circuits: Open interconnected rather than closed segregated. Neuroscience, 63, 363–379.PubMedCrossRef Joel, D. & Weiner, I. (1994) The organization of the basal gangliathalamocortical circuits: Open interconnected rather than closed segregated. Neuroscience, 63, 363–379.PubMedCrossRef
go back to reference Krack, P., Hariz, M.I., Baunez, C., Guridi, J. & Obeso, J.A. (2010). Deep brain stimulation: from neurology to psychiatry? Trends in Neurosciences, 33, 474–484.PubMedCrossRef Krack, P., Hariz, M.I., Baunez, C., Guridi, J. & Obeso, J.A. (2010). Deep brain stimulation: from neurology to psychiatry? Trends in Neurosciences, 33, 474–484.PubMedCrossRef
go back to reference Kühn, A.A., Kempf, F., Brücke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., Trottenberg, T., Kupsch, A., Schneider, G.H., Hariz, M.I., Vandenberghe, W., Nuttin, B. & Brown, P. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. Journal of Neuroscience, 28, 6165–6173.PubMedCrossRef Kühn, A.A., Kempf, F., Brücke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., Trottenberg, T., Kupsch, A., Schneider, G.H., Hariz, M.I., Vandenberghe, W., Nuttin, B. & Brown, P. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. Journal of Neuroscience, 28, 6165–6173.PubMedCrossRef
go back to reference Mallet, L., Polosan, M., Jaafari, N., et al. (2008). Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. New England Journal of Medicine, 359, 2121–2134.PubMedCrossRef Mallet, L., Polosan, M., Jaafari, N., et al. (2008). Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. New England Journal of Medicine, 359, 2121–2134.PubMedCrossRef
go back to reference Mink, J.W. (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.PubMedCrossRef Mink, J.W. (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.PubMedCrossRef
go back to reference Mink, J.W. (2001). Basal ganglia dysfunction in Tourette’s syndrome: a new hypothesis. Pediatric Neurology, 25, 190–198.PubMedCrossRef Mink, J.W. (2001). Basal ganglia dysfunction in Tourette’s syndrome: a new hypothesis. Pediatric Neurology, 25, 190–198.PubMedCrossRef
go back to reference Nambu, A., Tokuno, H. & Takada, M. (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neuroscience Research, 43, 111–117.PubMedCrossRef Nambu, A., Tokuno, H. & Takada, M. (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neuroscience Research, 43, 111–117.PubMedCrossRef
go back to reference Parent, A. (2002). Jules Bernard Luys and the subthalamic nucleus. Movement Disorders, 17, 181–185.PubMedCrossRef Parent, A. (2002). Jules Bernard Luys and the subthalamic nucleus. Movement Disorders, 17, 181–185.PubMedCrossRef
go back to reference Parent, A. & Hazrati, L-N. (1995). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research Reviews, 20, 128–154.PubMedCrossRef Parent, A. & Hazrati, L-N. (1995). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research Reviews, 20, 128–154.PubMedCrossRef
go back to reference Plaha, P., Ben-Shlomo, Y., Patel, N.K. & Gill S.S. (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain, 129, 1732–1747.PubMedCrossRef Plaha, P., Ben-Shlomo, Y., Patel, N.K. & Gill S.S. (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain, 129, 1732–1747.PubMedCrossRef
go back to reference Redgrave, P, Prescott, T.J. & Gurney, K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.PubMedCrossRef Redgrave, P, Prescott, T.J. & Gurney, K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.PubMedCrossRef
go back to reference Seger, C.A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32, 265–278.PubMedCrossRef Seger, C.A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32, 265–278.PubMedCrossRef
go back to reference Silberstein, P., Pogosyan, A., Kuhn, A.A., Hotton, G., Tisch, S., Kupsc, A., Harix, I. & Brown, P. (2004). Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain, 128, 1277–1291.CrossRef Silberstein, P., Pogosyan, A., Kuhn, A.A., Hotton, G., Tisch, S., Kupsc, A., Harix, I. & Brown, P. (2004). Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain, 128, 1277–1291.CrossRef
go back to reference Tekin, S. & Cummings, J.L. (2002). Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. Journal of Psychosomatic Research, 53, 647–654.PubMedCrossRef Tekin, S. & Cummings, J.L. (2002). Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. Journal of Psychosomatic Research, 53, 647–654.PubMedCrossRef
go back to reference Temel, Y., Blokland, A., Steinbusch, H.W. & Visser-Vandewalle, V. (2005). The functional role of the subthalamic nucleus in cognitive and limbic circuits. Progress in Neurobiology, 76, 393–413.PubMedCrossRef Temel, Y., Blokland, A., Steinbusch, H.W. & Visser-Vandewalle, V. (2005). The functional role of the subthalamic nucleus in cognitive and limbic circuits. Progress in Neurobiology, 76, 393–413.PubMedCrossRef
go back to reference Temel, Y., Kessels, A., Tan, S., Topdag, A., Boon, P. & Visser-Vandewalle, V. (2006). Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism and Related Disorders, 12, 265–272.PubMedCrossRef Temel, Y., Kessels, A., Tan, S., Topdag, A., Boon, P. & Visser-Vandewalle, V. (2006). Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism and Related Disorders, 12, 265–272.PubMedCrossRef
go back to reference Voon, V., Krack, P., Lang, A.E., Lozano, A.M., Dujardin, K., Schupbach, M., et al. (2008). A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain, 131, 2720–2728.PubMedCrossRef Voon, V., Krack, P., Lang, A.E., Lozano, A.M., Dujardin, K., Schupbach, M., et al. (2008). A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain, 131, 2720–2728.PubMedCrossRef
go back to reference Voorn, P., Vanderschuren, L.J.M.J., Groenewegen, H.J., Robbins, T.W. & Pennartz, C.M.A. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27, 468–474.PubMedCrossRef Voorn, P., Vanderschuren, L.J.M.J., Groenewegen, H.J., Robbins, T.W. & Pennartz, C.M.A. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27, 468–474.PubMedCrossRef
go back to reference Wise, S.P., Murray, E.A. & Gerfen, C.R. (1996) The frontal cortex-basal ganglia system in primates. Critical Reviews in Neurobiology, 10, 317–356.PubMedCrossRef Wise, S.P., Murray, E.A. & Gerfen, C.R. (1996) The frontal cortex-basal ganglia system in primates. Critical Reviews in Neurobiology, 10, 317–356.PubMedCrossRef
Metagegevens
Titel
Het enigma van de nucleus subthalamicus: implicaties voor neurologische en psychiatrische ziektebeelden
Auteurs
Prof. dr. Henk Groenewegen
prof. dr. Harry Uylings
Publicatiedatum
01-12-2010
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Neuropraxis / Uitgave 6/2010
Print ISSN: 1387-5817
Elektronisch ISSN: 1876-5785
DOI
https://doi.org/10.1007/s12474-010-0817-0

Andere artikelen Uitgave 6/2010

Neuropraxis 6/2010 Naar de uitgave

OriginalPaper

Signalement

EditorialNotes

Woorden Vooraf