Skip to main content
Top

2015 | OriginalPaper | Hoofdstuk

3. Glycolyse

Auteur : Frans C. Schuit

Gepubliceerd in: Leerboek metabolisme

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Hoofdstuk 3 bespreekt de glycolyse, de splitsing van glucose in twee moleculen pyruvaat. Deze weg wordt voorafgegaan door opname van glucose via glucosetransporters: eiwitkanaaltjes in de celmembraan. De glycolyse verloopt in tien, door specifieke enzymen gekatalyseerde, reacties die in drie fasen kunnen worden onderverdeeld. Tijdens de eerste fase worden twee ATP geïnvesteerd en ontstaat uit glucose het fructose-1,6-bisfosfaat. In de tweede fase wordt fructose-1,6-bisfosfaat omgezet in twee glyceraldehyde-3-fosfaat, die in de derde fase worden gemetaboliseerd tot twee moleculen pyruvaat (netto winst 2ATP). Pyruvaat kan in de mitochondria verder worden geoxideerd tot CO2, maar bij gebrek aan zuurstof wordt pyruvaat gereduceerd tot lactaat (anaerobe glycolyse). Een afgeleide van de glycolyse, het 2,3-bisfosfoglyceraat, regelt de zuurstofafgifte door rode bloedcellen aan de weefsels. De glycolyse is niet alleen katabool, maar sluit ook aan op anabole paden, zoals de pentosefosfaatweg en de vetzuursynthese. Regeling van de glycolytische flux gebeurt via fructose-2,6-bisfosfaat, dat fosfofructokinase-1 activeert.
Literatuur
go back to reference Aragones, J., Schneider, M., Van Geyte, K., Fraisl, P., Dresselaers, T., Mazzone, M., et al. (2008). Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180.CrossRefPubMed Aragones, J., Schneider, M., Van Geyte, K., Fraisl, P., Dresselaers, T., Mazzone, M., et al. (2008). Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180.CrossRefPubMed
go back to reference Beja-Pereira, A., Luikart, G., England, P.R., Bradley, D.G., Jann, O.C., Bertorelle, G., et al. (2003). Gene-culture coevolution between cattle milk protein genes & human lactase genes. Nat. Genet. 35, 311–313.CrossRefPubMed Beja-Pereira, A., Luikart, G., England, P.R., Bradley, D.G., Jann, O.C., Bertorelle, G., et al. (2003). Gene-culture coevolution between cattle milk protein genes & human lactase genes. Nat. Genet. 35, 311–313.CrossRefPubMed
go back to reference Berry, G.T. (2012). Galactosemia: when is it a newborn screening emergency? Mol Genet Metab. 106, 7–11.CrossRefPubMed Berry, G.T. (2012). Galactosemia: when is it a newborn screening emergency? Mol Genet Metab. 106, 7–11.CrossRefPubMed
go back to reference Bollen, M., Hue, L. & Stalmans, W. (1983) Effects of glucose on phosphorylase and glycogen synthase in hepatocytes from diabetic rats. Biochem J. 210,783–787.CrossRefPubMedPubMedCentral Bollen, M., Hue, L. & Stalmans, W. (1983) Effects of glucose on phosphorylase and glycogen synthase in hepatocytes from diabetic rats. Biochem J. 210,783–787.CrossRefPubMedPubMedCentral
go back to reference Bouteldja, N. & Timson, D.J. (2010) The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis. 33, 105–112.CrossRefPubMed Bouteldja, N. & Timson, D.J. (2010) The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis. 33, 105–112.CrossRefPubMed
go back to reference Danial, N.N., Walensky, L.D., Zhang, C.Y., Choi, C.S., Fisher, J.K., Molina, A.J.A., et al. (2008). Dual role of proapoptotic BAD in insulin secretion & bèta-cell survival. Nature Medicine 14, 144–153.CrossRefPubMedPubMedCentral Danial, N.N., Walensky, L.D., Zhang, C.Y., Choi, C.S., Fisher, J.K., Molina, A.J.A., et al. (2008). Dual role of proapoptotic BAD in insulin secretion & bèta-cell survival. Nature Medicine 14, 144–153.CrossRefPubMedPubMedCentral
go back to reference De Vos, A., Heimberg, H., Quartier, E., Huypens, P., Bouwens, L., Pipeleers, D. et al. (1995). Human & rat bèta-cells differ in glucose transporter but not in glucokinase gene expression. J Clin. Invest. 96, 2489–2495. De Vos, A., Heimberg, H., Quartier, E., Huypens, P., Bouwens, L., Pipeleers, D. et al. (1995). Human & rat bèta-cells differ in glucose transporter but not in glucokinase gene expression. J Clin. Invest. 96, 2489–2495.
go back to reference Donohue, T.M., Jr. (2007). Alcohol-induced steatosis in liver cells. World J. Gastroenterol. 13, 4974–4978.CrossRefPubMed Donohue, T.M., Jr. (2007). Alcohol-induced steatosis in liver cells. World J. Gastroenterol. 13, 4974–4978.CrossRefPubMed
go back to reference Froguel, P., Vaxillaire, M., Sun, F., Velho, G., Zouali, H., Butel, M.O., et al. (1992). Close linkage of glucokinase locus on chromosome-7P to early-onset non-insulin-dependent diabetes-mellitus. Nature. 356, 162–164.CrossRefPubMed Froguel, P., Vaxillaire, M., Sun, F., Velho, G., Zouali, H., Butel, M.O., et al. (1992). Close linkage of glucokinase locus on chromosome-7P to early-onset non-insulin-dependent diabetes-mellitus. Nature. 356, 162–164.CrossRefPubMed
go back to reference Ishiki, M. & Klip, A. (2005). Minireview: Recent developments in the regulation of glucose transporter-4 traffic: New signals, locations, & partners. Endocrinology 146, 5071–5078.CrossRefPubMed Ishiki, M. & Klip, A. (2005). Minireview: Recent developments in the regulation of glucose transporter-4 traffic: New signals, locations, & partners. Endocrinology 146, 5071–5078.CrossRefPubMed
go back to reference Kasischke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R. & Webb, W.W. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103.CrossRefPubMed Kasischke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R. & Webb, W.W. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103.CrossRefPubMed
go back to reference Lieber, C.S. (2003). Relationships between nutrition, alcohol use, & liver disease. Alcohol Res. Health. 27, 220–231. Lieber, C.S. (2003). Relationships between nutrition, alcohol use, & liver disease. Alcohol Res. Health. 27, 220–231.
go back to reference Matsuzaki, T., Takagi, A., Ikemura, H., Matsuguchi, T. & Yokokura, T. (2007). Intestinal microflora: probiotics & autoimmunity. J. Nutr. 137, 798S–802S.CrossRefPubMed Matsuzaki, T., Takagi, A., Ikemura, H., Matsuguchi, T. & Yokokura, T. (2007). Intestinal microflora: probiotics & autoimmunity. J. Nutr. 137, 798S–802S.CrossRefPubMed
go back to reference Mazzone, M., Dettori, D., Leite, d. O., Loges, S., Schmidt, T., Jonckx, B., et al. (2009). Heterozygous deficiency of PHD2 restores tumor oxygenation & inhibits metastasis via endothelial normalization. Cell 136, 839–851.CrossRefPubMedPubMedCentral Mazzone, M., Dettori, D., Leite, d. O., Loges, S., Schmidt, T., Jonckx, B., et al. (2009). Heterozygous deficiency of PHD2 restores tumor oxygenation & inhibits metastasis via endothelial normalization. Cell 136, 839–851.CrossRefPubMedPubMedCentral
go back to reference Nakamura, A., Terauchi, Y., Ohyama, S., Kubota, J., Shimazaki, H., Nambu, T., et al. (2009). Impact of small-molecule glucokinase activator on glucose metabolism & bèta-cell mass 1. Endocrinol. 150, 1147–1154.CrossRef Nakamura, A., Terauchi, Y., Ohyama, S., Kubota, J., Shimazaki, H., Nambu, T., et al. (2009). Impact of small-molecule glucokinase activator on glucose metabolism & bèta-cell mass 1. Endocrinol. 150, 1147–1154.CrossRef
go back to reference O’Brien, P.J. (2008). Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology. 245, 206–218.CrossRefPubMed O’Brien, P.J. (2008). Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology. 245, 206–218.CrossRefPubMed
go back to reference Otonkoski, T., Jiao, H., Kaminen-Ahola, N., Tapia-Paez, I., Ullah, M.S., Parton, L.E., et al. (2007). Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic bèta-cells. Am. J. Hum. Genet. 81, 467–474.CrossRefPubMedPubMedCentral Otonkoski, T., Jiao, H., Kaminen-Ahola, N., Tapia-Paez, I., Ullah, M.S., Parton, L.E., et al. (2007). Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic bèta-cells. Am. J. Hum. Genet. 81, 467–474.CrossRefPubMedPubMedCentral
go back to reference Pal, P. & Miller, B.G. (2009). Activating mutations in the human glucokinase gene revealed by genetic selection. Biochemistry 48, 814–816.CrossRefPubMed Pal, P. & Miller, B.G. (2009). Activating mutations in the human glucokinase gene revealed by genetic selection. Biochemistry 48, 814–816.CrossRefPubMed
go back to reference Pares, X., Farres, J., Kedishvili, N. & Duester, G. (2008). Medium- & short-chain dehydrogenase/reductase gene & protein families: Medium-chain & short-chain dehydrogenases/reductases in retinoid metabolism. Cell Mol. Life Sci. 65, 3936–3949.CrossRefPubMedPubMedCentral Pares, X., Farres, J., Kedishvili, N. & Duester, G. (2008). Medium- & short-chain dehydrogenase/reductase gene & protein families: Medium-chain & short-chain dehydrogenases/reductases in retinoid metabolism. Cell Mol. Life Sci. 65, 3936–3949.CrossRefPubMedPubMedCentral
go back to reference Patel, A.B., Lai, J.C., Chowdhury, G.M., Hyder, F., Rothman, D.L., Shulman, R.G. & Behar, K.L. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA. 111, 5385–5390.CrossRefPubMedPubMedCentral Patel, A.B., Lai, J.C., Chowdhury, G.M., Hyder, F., Rothman, D.L., Shulman, R.G. & Behar, K.L. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA. 111, 5385–5390.CrossRefPubMedPubMedCentral
go back to reference Peng, G.S. & Yin, S.J. (2009). Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 & alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations. Hum. Genomics. 3, 121–127.CrossRef Peng, G.S. & Yin, S.J. (2009). Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 & alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations. Hum. Genomics. 3, 121–127.CrossRef
go back to reference Persson, B., Hedlund, J. & Jornvall, H. (2008). Medium- & short-chain dehydrogenase/reductase gene & protein families: the MDR superfamily. Cell Mol. Life Sci. 65, 3879–3894.CrossRefPubMedPubMedCentral Persson, B., Hedlund, J. & Jornvall, H. (2008). Medium- & short-chain dehydrogenase/reductase gene & protein families: the MDR superfamily. Cell Mol. Life Sci. 65, 3879–3894.CrossRefPubMedPubMedCentral
go back to reference Piskur, J., Rozpedowska, E., Polakova, S., Merico, A. & Compagno, C. (2006). How did Saccharomyces evolve to become a good brewer? Trends Genet. 22, 183–186.CrossRefPubMed Piskur, J., Rozpedowska, E., Polakova, S., Merico, A. & Compagno, C. (2006). How did Saccharomyces evolve to become a good brewer? Trends Genet. 22, 183–186.CrossRefPubMed
go back to reference Russell, R.M. (1980). Vitamin A & zinc metabolism in alcoholism. Am. J. Clin. Nutr. 33, 2741–2749.CrossRefPubMed Russell, R.M. (1980). Vitamin A & zinc metabolism in alcoholism. Am. J. Clin. Nutr. 33, 2741–2749.CrossRefPubMed
go back to reference Schuit, F., De, V.A., Farfari, S., Moens, K., Pipeleers, D., Brun, T., et al. (1997). Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in bèta-cells. J. Biol. Chem. 272, 18572–18579.CrossRefPubMed Schuit, F., De, V.A., Farfari, S., Moens, K., Pipeleers, D., Brun, T., et al. (1997). Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in bèta-cells. J. Biol. Chem. 272, 18572–18579.CrossRefPubMed
go back to reference Schuit, F.C., Huypens, P., Heimberg, H. & Pipeleers, D.G. (2001). Glucose sensing in pancreatic bèta-cells - A model for the study of other glucose-regulated cells in gut, pancreas, & hypothalamus. Diabetes 50, 1–11.CrossRefPubMed Schuit, F.C., Huypens, P., Heimberg, H. & Pipeleers, D.G. (2001). Glucose sensing in pancreatic bèta-cells - A model for the study of other glucose-regulated cells in gut, pancreas, & hypothalamus. Diabetes 50, 1–11.CrossRefPubMed
go back to reference Shah, N.P. (2000). Probiotic bacteria: selective enumeration & survival in dairy foods. J. Dairy Sci. 83, 894–907.CrossRefPubMed Shah, N.P. (2000). Probiotic bacteria: selective enumeration & survival in dairy foods. J. Dairy Sci. 83, 894–907.CrossRefPubMed
go back to reference Tappy, L. & Lê, K.A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 90, 23–46.CrossRefPubMed Tappy, L. & Lê, K.A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 90, 23–46.CrossRefPubMed
go back to reference Van Schaftingen, E., Jett, M.F., Hue, L. & Hers, H.G. (1981). Control of liver 6-phosphofructokinase by fructose 2, 6-bisphosphate & other effectors. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78, 3483–3486.CrossRef Van Schaftingen, E., Jett, M.F., Hue, L. & Hers, H.G. (1981). Control of liver 6-phosphofructokinase by fructose 2, 6-bisphosphate & other effectors. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78, 3483–3486.CrossRef
go back to reference Van Schaftingen, E., Vandercammen, A., Detheux, M. & Davies, D.R. (1992). The regulatory protein of liver glucokinase. Adv. Enzyme Regulation 32, 133–148. Van Schaftingen, E., Vandercammen, A., Detheux, M. & Davies, D.R. (1992). The regulatory protein of liver glucokinase. Adv. Enzyme Regulation 32, 133–148.
go back to reference Wenger, R.H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, & O2-regulated gene expression. FASEB J 16, 1151–1162.CrossRefPubMed Wenger, R.H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, & O2-regulated gene expression. FASEB J 16, 1151–1162.CrossRefPubMed
go back to reference Yang, H. & Kaelin, W.G., Jr. (2001). Molecular pathogenesis of the von Hippel-Lindau hereditary cancer syndrome: implications for oxygen sensing. Cell Growth Differ. 12, 447–455.PubMed Yang, H. & Kaelin, W.G., Jr. (2001). Molecular pathogenesis of the von Hippel-Lindau hereditary cancer syndrome: implications for oxygen sensing. Cell Growth Differ. 12, 447–455.PubMed
go back to reference Yin, S.J. (1994). Alcohol dehydrogenase: enzymology & metabolism. Alcohol Alcohol Suppl. 2, 113–119.PubMed Yin, S.J. (1994). Alcohol dehydrogenase: enzymology & metabolism. Alcohol Alcohol Suppl. 2, 113–119.PubMed
Metagegevens
Titel
Glycolyse
Auteur
Frans C. Schuit
Copyright
2015
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-0620-6_3