Skip to main content
Top

2015 | OriginalPaper | Hoofdstuk

6. Glycogeenmetabolisme, gluconeogenese en pentosefosfaatweg

Auteur : Frans C. Schuit

Gepubliceerd in: Leerboek metabolisme

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Hoofdstuk 6 begint met de aanmaak en afbraak van glycogeen (respectievelijk glycogeensynthese en glycogenolyse). Glycogeen vertegenwoordigt een beperkte hoeveelheid reservebrandstof in de lever (tussen de maaltijden – bufferen bloedglucoseconcentratie) of in de witte spiervezels (contracties – synthese van ATP). De regeling van beide processen is reciprook en verloopt via reversibele (de)fosforylering van glycogeensynthase en fosforylase. Een reeks erfelijke ziekten van deze wegen leidt tot glycogeenopstapeling (glycogenose). Als we vasten, zal de lever de bloedglucoseconcentratie verder op peil houden via de gluconeogenese, een proces waarin aminozuren, glycerol en lactaat worden omgezet in glucose. De flux van deze weg wordt onderdrukt door fructose-2,6-bisfosfaat. De pentosefosfaatweg begint bij glucose-6-fosfaat, die oxidatief wordt omgezet tot ribulose-5-fosfaat met vorming van NADPH. Uit ribulose-5-fosfaat kan ribose-5-fosfaat ontstaan voor de synthese van RNA en DNA, of glyceraldehyde-3-fosfaat en fructose-6-fosfaat die kunnen dienen voor vetzuursynthese. Veelvuldig voorkomende mutaties in het glucose-6-fosfaatdehydrogenase-gen houden verband met bescherming tegen malaria-infecties.
Literatuur
go back to reference Bijvoet, A.G., Van Hirtum, H., Kroos, M.A., Van de Kamp, E.H., Schoneveld, O., Visser, P., et al. (1999). Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum. Mol. Genet. 8, 2145–2153.CrossRefPubMed Bijvoet, A.G., Van Hirtum, H., Kroos, M.A., Van de Kamp, E.H., Schoneveld, O., Visser, P., et al. (1999). Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum. Mol. Genet. 8, 2145–2153.CrossRefPubMed
go back to reference Francis, S.H., Blount, M.A. & Corbin, J.D. (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 91, 651–690.CrossRefPubMed Francis, S.H., Blount, M.A. & Corbin, J.D. (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 91, 651–690.CrossRefPubMed
go back to reference Hakimi, P., Yang, J., Casadesus, G., Massillon, D., Tolentino-Silva, F., Nye, C.K., et al. (2007). Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse 1. Journal of Biological Chemistry 282, 32844–32855.CrossRefPubMed Hakimi, P., Yang, J., Casadesus, G., Massillon, D., Tolentino-Silva, F., Nye, C.K., et al. (2007). Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse 1. Journal of Biological Chemistry 282, 32844–32855.CrossRefPubMed
go back to reference Ho, H.Y., Cheng, M.L. & Chiu, D.T. (2007). Glucose-6-phosphate dehydrogenase-from oxidative stress to cellular functions & degenerative diseases. Redox. Rep. 12, 109–118. Ho, H.Y., Cheng, M.L. & Chiu, D.T. (2007). Glucose-6-phosphate dehydrogenase-from oxidative stress to cellular functions & degenerative diseases. Redox. Rep. 12, 109–118.
go back to reference Kishnani, P.S., Corzo, D., Nicolino, M., Byrne, B., Mandel, H., Hwu, W.L., et al. (2007). Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 68, 99–109.CrossRefPubMed Kishnani, P.S., Corzo, D., Nicolino, M., Byrne, B., Mandel, H., Hwu, W.L., et al. (2007). Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 68, 99–109.CrossRefPubMed
go back to reference Koeberl, D.D., Pinto, C., Brown, T. & Chen, Y.T. (2009). Gene therapy for inhereted metabolic disorders in companion animals. ILAR. J 50, 122–127.CrossRefPubMed Koeberl, D.D., Pinto, C., Brown, T. & Chen, Y.T. (2009). Gene therapy for inhereted metabolic disorders in companion animals. ILAR. J 50, 122–127.CrossRefPubMed
go back to reference Luzzatto, L., Usanga, F.A. & Reddy, S. (1969). Glucose-6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. Science. 164, 839–842.CrossRefPubMed Luzzatto, L., Usanga, F.A. & Reddy, S. (1969). Glucose-6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. Science. 164, 839–842.CrossRefPubMed
go back to reference McMillan, D.C., Bolchoz, L.J. & Jollow D.J. (2001) Favism: effect of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate shunt activity, morphology, and membrane skeletal proteins. Toxicol Sci. 62, 353–359.CrossRefPubMed McMillan, D.C., Bolchoz, L.J. & Jollow D.J. (2001) Favism: effect of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate shunt activity, morphology, and membrane skeletal proteins. Toxicol Sci. 62, 353–359.CrossRefPubMed
go back to reference Newsholme, E.A. (1978). Substrate cycles: their metabolic, energetic & thermic consequences in man. Biochem Soc. Symp. 43, 183–205. Newsholme, E.A. (1978). Substrate cycles: their metabolic, energetic & thermic consequences in man. Biochem Soc. Symp. 43, 183–205.
go back to reference Noori-Daloii, M.R., Najafi, L., Mohammad, G.S., Hajebrahimi, Z. & Sanati, M.H. (2004). Molecular identification of mutations in G6PD gene in patients with favism in Iran. J. Physiol Biochem. 60, 273–277.CrossRefPubMed Noori-Daloii, M.R., Najafi, L., Mohammad, G.S., Hajebrahimi, Z. & Sanati, M.H. (2004). Molecular identification of mutations in G6PD gene in patients with favism in Iran. J. Physiol Biochem. 60, 273–277.CrossRefPubMed
go back to reference Ostrom, R.S., Bogard, A.S., Gros, R. & Feldman, R.D. (2012). Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps. Naunyn Schmiedebergs Arch Pharmacol. 385, 5–12.CrossRefPubMed Ostrom, R.S., Bogard, A.S., Gros, R. & Feldman, R.D. (2012). Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps. Naunyn Schmiedebergs Arch Pharmacol. 385, 5–12.CrossRefPubMed
go back to reference Reddy, S.K., Austin, S.L., Spencer-Manzon, M., Koeberl, D.D., Clary, B.M., Desai, D.M., et al. (2009). Liver transplantation for glycogen storage disease type Ia. J Hepatol. 51, 483–490.CrossRefPubMed Reddy, S.K., Austin, S.L., Spencer-Manzon, M., Koeberl, D.D., Clary, B.M., Desai, D.M., et al. (2009). Liver transplantation for glycogen storage disease type Ia. J Hepatol. 51, 483–490.CrossRefPubMed
go back to reference Salvidio, E., Pannacciulli, I., Tizianello, A. & Ajmar, F. (1967). Nature of hemolytic crises & the fate of G6PD deficient, drug-damaged erythrocytes in Sardinians. N. Engl. J. Med. 276, 1339–1344.CrossRefPubMed Salvidio, E., Pannacciulli, I., Tizianello, A. & Ajmar, F. (1967). Nature of hemolytic crises & the fate of G6PD deficient, drug-damaged erythrocytes in Sardinians. N. Engl. J. Med. 276, 1339–1344.CrossRefPubMed
go back to reference Sutherland, E.W. & Robison, G.A. (1966). The role of cyclic-3’, 5’-AMP in responses to catecholamines & other hormones. Pharmacol. Rev. 18, 145–161.PubMed Sutherland, E.W. & Robison, G.A. (1966). The role of cyclic-3’, 5’-AMP in responses to catecholamines & other hormones. Pharmacol. Rev. 18, 145–161.PubMed
go back to reference Van den Hout, H., Reuser, A.J., Vulto, A.G., Loonen, M.C., Cromme-Dijkhuis, A. & Van der Ploeg, A.T. (2000). Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 356, 397–398.CrossRefPubMed Van den Hout, H., Reuser, A.J., Vulto, A.G., Loonen, M.C., Cromme-Dijkhuis, A. & Van der Ploeg, A.T. (2000). Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 356, 397–398.CrossRefPubMed
go back to reference Van der Ploeg, A.T. & Reuser, A.J.J. (2008). Lysosomal storage disease 2 - Pompe’s disease. Lancet 372, 1342–1353.CrossRefPubMed Van der Ploeg, A.T. & Reuser, A.J.J. (2008). Lysosomal storage disease 2 - Pompe’s disease. Lancet 372, 1342–1353.CrossRefPubMed
go back to reference Van Zwieten, R., Verhoeven, A.J. & Roos, D. (2014) Inborn defects in the antioxidant systems of human red blood cells. Free Radic Biol Med. 67C, 377–386.CrossRef Van Zwieten, R., Verhoeven, A.J. & Roos, D. (2014) Inborn defects in the antioxidant systems of human red blood cells. Free Radic Biol Med. 67C, 377–386.CrossRef
go back to reference Veiga-da-Cunha, M., Gerin, I., Chen, Y.T., Lee, P.J., Leonard, J.V., Maire, I., et al. (1999). The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a. Eur J Hum. Genet. 7, 717–723.CrossRefPubMed Veiga-da-Cunha, M., Gerin, I., Chen, Y.T., Lee, P.J., Leonard, J.V., Maire, I., et al. (1999). The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a. Eur J Hum. Genet. 7, 717–723.CrossRefPubMed
go back to reference Yoon, J.C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., et al. (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 413, 131–138.CrossRefPubMed Yoon, J.C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., et al. (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 413, 131–138.CrossRefPubMed
Metagegevens
Titel
Glycogeenmetabolisme, gluconeogenese en pentosefosfaatweg
Auteur
Frans C. Schuit
Copyright
2015
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-0620-6_6